Cargando…
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high-throughput screening (VHTS). Despite development of numerous MR diagnostics, the extent to which a single value of such a diagnos...
Autores principales: | Duan, Chenru, Chu, Daniel B. K., Nandy, Aditya, Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067623/ https://www.ncbi.nlm.nih.gov/pubmed/35655882 http://dx.doi.org/10.1039/d2sc00393g |
Ejemplares similares
-
New Strategies for Direct Methane-to-Methanol Conversion
from Active Learning Exploration of 16 Million Catalysts
por: Nandy, Aditya, et al.
Publicado: (2022) -
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
por: Terrones, Gianmarco G., et al.
Publicado: (2023) -
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
por: Janet, Jon Paul, et al.
Publicado: (2019) -
Active Learning Exploration
of Transition-Metal Complexes
to Discover Method-Insensitive and Synthetically Accessible Chromophores
por: Duan, Chenru, et al.
Publicado: (2022) -
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
por: Nandy, Aditya, et al.
Publicado: (2022)