Cargando…
Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam
BACKGROUND: Dengue fever is highly endemic in Vietnam, but scrub typhus—although recognized as an endemic disease—remains underappreciated. These diseases together are likely to account for more than half of the acute undifferentiated fever burden in Vietnam. Scrub typhus (ST) is a bacterial disease...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067661/ https://www.ncbi.nlm.nih.gov/pubmed/35507541 http://dx.doi.org/10.1371/journal.pntd.0010281 |
_version_ | 1784700053285240832 |
---|---|
author | Tran, Hanh Thi Duc Schindler, Christian Pham, Thuy Thi Thanh Vien, Mai Quang Do, Hung Manh Ngo, Quyet Thi Nguyen, Trieu Bao Hoang, Hang Thi Hai Vu, Lan Thi Hoang Schelling, Esther Paris, Daniel H. |
author_facet | Tran, Hanh Thi Duc Schindler, Christian Pham, Thuy Thi Thanh Vien, Mai Quang Do, Hung Manh Ngo, Quyet Thi Nguyen, Trieu Bao Hoang, Hang Thi Hai Vu, Lan Thi Hoang Schelling, Esther Paris, Daniel H. |
author_sort | Tran, Hanh Thi Duc |
collection | PubMed |
description | BACKGROUND: Dengue fever is highly endemic in Vietnam, but scrub typhus—although recognized as an endemic disease—remains underappreciated. These diseases together are likely to account for more than half of the acute undifferentiated fever burden in Vietnam. Scrub typhus (ST) is a bacterial disease requiring antimicrobial treatment, while dengue fever (DF) is of viral etiology and does not. The access to adequate diagnostics and the current understanding of empirical treatment strategies for both illnesses remain limited. In this study we aimed to contribute to the clinical decision process in the management of these two important etiologies of febrile illness in Vietnam. METHODS: Using retrospective data from 221 PCR-confirmed scrub typhus cases and 387 NS1 protein positive dengue fever patients admitted to five hospitals in Khanh Hoa province (central Vietnam), we defined predictive characteristics for both diseases that support simple clinical decision making with potential to inform decision algorithms in future. We developed models to discriminate scrub typhus from dengue fever using multivariable logistic regression (M-LR) and classification and regression trees (CART). Regression trees were developed for the entire data set initially and pruned, based on cross-validation. Regression models were developed in a training data set involving 60% of the total sample and validated in the complementary subsample. Probability cut points for the distinction between scrub typhus and dengue fever were chosen to maximise the sum of sensitivity and specificity. RESULTS: Using M-LR, following seven predictors were identified, that reliably differentiate ST from DF; eschar, regional lymphadenopathy, an occupation in nature, increased days of fever on admission, increased neutrophil count, decreased ratio of neutrophils/lymphocytes, and age over 40. Sensitivity and specificity of predictions based on these seven factors reached 93.7% and 99.5%, respectively. When excluding the “eschar” variable, the values dropped to 76.3% and 92.3%, respectively. The CART model generated one further variable; increased days of fever on admission, when eschar was included, the sensitivity and specificity was 95% and 96.9%, respectively. The model without eschar involved the following six variables; regional lymphadenopathy, increased days of fever on admission, increased neutrophil count, increased lymphocyte count, platelet count ≥ 47 G/L and age over 28 years as predictors of ST and provided a sensitivity of 77.4% and a specificity of 90.7%. CONCLUSIONS: The generated algorithms contribute to differentiating scrub typhus from dengue fever using basic clinical and laboratory parameters, supporting clinical decision making in areas where dengue and scrub typhus are co-endemic in Vietnam. |
format | Online Article Text |
id | pubmed-9067661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90676612022-05-05 Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam Tran, Hanh Thi Duc Schindler, Christian Pham, Thuy Thi Thanh Vien, Mai Quang Do, Hung Manh Ngo, Quyet Thi Nguyen, Trieu Bao Hoang, Hang Thi Hai Vu, Lan Thi Hoang Schelling, Esther Paris, Daniel H. PLoS Negl Trop Dis Research Article BACKGROUND: Dengue fever is highly endemic in Vietnam, but scrub typhus—although recognized as an endemic disease—remains underappreciated. These diseases together are likely to account for more than half of the acute undifferentiated fever burden in Vietnam. Scrub typhus (ST) is a bacterial disease requiring antimicrobial treatment, while dengue fever (DF) is of viral etiology and does not. The access to adequate diagnostics and the current understanding of empirical treatment strategies for both illnesses remain limited. In this study we aimed to contribute to the clinical decision process in the management of these two important etiologies of febrile illness in Vietnam. METHODS: Using retrospective data from 221 PCR-confirmed scrub typhus cases and 387 NS1 protein positive dengue fever patients admitted to five hospitals in Khanh Hoa province (central Vietnam), we defined predictive characteristics for both diseases that support simple clinical decision making with potential to inform decision algorithms in future. We developed models to discriminate scrub typhus from dengue fever using multivariable logistic regression (M-LR) and classification and regression trees (CART). Regression trees were developed for the entire data set initially and pruned, based on cross-validation. Regression models were developed in a training data set involving 60% of the total sample and validated in the complementary subsample. Probability cut points for the distinction between scrub typhus and dengue fever were chosen to maximise the sum of sensitivity and specificity. RESULTS: Using M-LR, following seven predictors were identified, that reliably differentiate ST from DF; eschar, regional lymphadenopathy, an occupation in nature, increased days of fever on admission, increased neutrophil count, decreased ratio of neutrophils/lymphocytes, and age over 40. Sensitivity and specificity of predictions based on these seven factors reached 93.7% and 99.5%, respectively. When excluding the “eschar” variable, the values dropped to 76.3% and 92.3%, respectively. The CART model generated one further variable; increased days of fever on admission, when eschar was included, the sensitivity and specificity was 95% and 96.9%, respectively. The model without eschar involved the following six variables; regional lymphadenopathy, increased days of fever on admission, increased neutrophil count, increased lymphocyte count, platelet count ≥ 47 G/L and age over 28 years as predictors of ST and provided a sensitivity of 77.4% and a specificity of 90.7%. CONCLUSIONS: The generated algorithms contribute to differentiating scrub typhus from dengue fever using basic clinical and laboratory parameters, supporting clinical decision making in areas where dengue and scrub typhus are co-endemic in Vietnam. Public Library of Science 2022-05-04 /pmc/articles/PMC9067661/ /pubmed/35507541 http://dx.doi.org/10.1371/journal.pntd.0010281 Text en © 2022 Tran et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tran, Hanh Thi Duc Schindler, Christian Pham, Thuy Thi Thanh Vien, Mai Quang Do, Hung Manh Ngo, Quyet Thi Nguyen, Trieu Bao Hoang, Hang Thi Hai Vu, Lan Thi Hoang Schelling, Esther Paris, Daniel H. Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title | Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title_full | Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title_fullStr | Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title_full_unstemmed | Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title_short | Simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central Vietnam |
title_sort | simple clinical and laboratory predictors to improve empirical treatment strategies in areas of high scrub typhus and dengue endemicity, central vietnam |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067661/ https://www.ncbi.nlm.nih.gov/pubmed/35507541 http://dx.doi.org/10.1371/journal.pntd.0010281 |
work_keys_str_mv | AT tranhanhthiduc simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT schindlerchristian simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT phamthuythithanh simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT vienmaiquang simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT dohungmanh simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT ngoquyetthi simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT nguyentrieubao simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT hoanghangthihai simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT vulanthihoang simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT schellingesther simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam AT parisdanielh simpleclinicalandlaboratorypredictorstoimproveempiricaltreatmentstrategiesinareasofhighscrubtyphusanddengueendemicitycentralvietnam |