Cargando…
Deep learning with self-supervision and uncertainty regularization to count fish in underwater images
Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a...
Autores principales: | Tarling, Penny, Cantor, Mauricio, Clapés, Albert, Escalera, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067705/ https://www.ncbi.nlm.nih.gov/pubmed/35507631 http://dx.doi.org/10.1371/journal.pone.0267759 |
Ejemplares similares
-
Weakly supervised underwater fish segmentation using affinity LCFCN
por: Laradji, Issam H., et al.
Publicado: (2021) -
Deep Supervised Residual Dense Network for Underwater Image Enhancement
por: Han, Yanling, et al.
Publicado: (2021) -
ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish
por: García-Magariño, Iván, et al.
Publicado: (2017) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
Effect of underwater visual survey methodology on bias and precision of fish counts: a simulation approach
por: Pais, Miguel Pessanha, et al.
Publicado: (2018)