Cargando…
Broadband terahertz time-domain polarimetry based on air plasma filament emissions and spinning electro-optic sampling in GaP
We report on a time-domain polarimetry (TDP) system for generating and detecting broadband terahertz (THz) waves of different polarization angles. We generate THz waves from two-color laser filaments and determine their polarization states with a detection bandwidth of up to 8 THz using a spinning g...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068238/ https://www.ncbi.nlm.nih.gov/pubmed/35539361 http://dx.doi.org/10.1063/5.0087127 |
Sumario: | We report on a time-domain polarimetry (TDP) system for generating and detecting broadband terahertz (THz) waves of different polarization angles. We generate THz waves from two-color laser filaments and determine their polarization states with a detection bandwidth of up to 8 THz using a spinning gallium phosphide crystal. The polarization of THz emission can be controlled by adjusting the position and tilt angle of the β-barium borate crystal. We characterize the precision of this system for polarimetric measurements at fixed time delay to be [Formula: see text] and [Formula: see text] for complete time-domain waveforms. We also demonstrate the feasibility of our TDP system by measuring broadband optical properties of anisotropic samples in both transmission and reflection geometries. The THz-TDP technique can be easily integrated in conventional THz time-domain spectroscopy setups using nonlinear crystal detectors. |
---|