Cargando…

The popularity of contradictory information about COVID-19 vaccine on social media in China

To eliminate the impact of contradictory information on vaccine hesitancy on social media, this research developed a framework to compare the popularity of information expressing contradictory attitudes towards COVID-19 vaccine or vaccination, mine the similarities and differences among contradictor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dandan, Zhou, Yadong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068608/
https://www.ncbi.nlm.nih.gov/pubmed/35527790
http://dx.doi.org/10.1016/j.chb.2022.107320
Descripción
Sumario:To eliminate the impact of contradictory information on vaccine hesitancy on social media, this research developed a framework to compare the popularity of information expressing contradictory attitudes towards COVID-19 vaccine or vaccination, mine the similarities and differences among contradictory information's characteristics, and determine which factors influenced the popularity mostly. We called Sina Weibo API to collect data. Firstly, to extract multi-dimensional features from original tweets and quantify their popularity, content analysis, sentiment computing and k-medoids clustering were used. Statistical analysis showed that anti-vaccine tweets were more popular than pro-vaccine tweets, but not significant. Then, by visualizing the features' centrality and clustering in information-feature networks, we found that there were differences in text characteristics, information display dimension, topic, sentiment, readability, posters' characteristics of the original tweets expressing different attitudes. Finally, we employed regression models and SHapley Additive exPlanations to explore and explain the relationship between tweets' popularity and content and contextual features. Suggestions for adjusting the organizational strategy of contradictory information to control its popularity from different dimensions, such as poster's influence, activity and identity, tweets' topic, sentiment, readability were proposed, to reduce vaccine hesitancy.