Cargando…

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act...

Descripción completa

Detalles Bibliográficos
Autores principales: Batzner, Simon, Musaelian, Albert, Sun, Lixin, Geiger, Mario, Mailoa, Jonathan P., Kornbluth, Mordechai, Molinari, Nicola, Smidt, Tess E., Kozinsky, Boris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068614/
https://www.ncbi.nlm.nih.gov/pubmed/35508450
http://dx.doi.org/10.1038/s41467-022-29939-5
_version_ 1784700254889705472
author Batzner, Simon
Musaelian, Albert
Sun, Lixin
Geiger, Mario
Mailoa, Jonathan P.
Kornbluth, Mordechai
Molinari, Nicola
Smidt, Tess E.
Kozinsky, Boris
author_facet Batzner, Simon
Musaelian, Albert
Sun, Lixin
Geiger, Mario
Mailoa, Jonathan P.
Kornbluth, Mordechai
Molinari, Nicola
Smidt, Tess E.
Kozinsky, Boris
author_sort Batzner, Simon
collection PubMed
description This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.
format Online
Article
Text
id pubmed-9068614
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90686142022-05-05 E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials Batzner, Simon Musaelian, Albert Sun, Lixin Geiger, Mario Mailoa, Jonathan P. Kornbluth, Mordechai Molinari, Nicola Smidt, Tess E. Kozinsky, Boris Nat Commun Article This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales. Nature Publishing Group UK 2022-05-04 /pmc/articles/PMC9068614/ /pubmed/35508450 http://dx.doi.org/10.1038/s41467-022-29939-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Batzner, Simon
Musaelian, Albert
Sun, Lixin
Geiger, Mario
Mailoa, Jonathan P.
Kornbluth, Mordechai
Molinari, Nicola
Smidt, Tess E.
Kozinsky, Boris
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title_full E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title_fullStr E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title_full_unstemmed E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title_short E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
title_sort e(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068614/
https://www.ncbi.nlm.nih.gov/pubmed/35508450
http://dx.doi.org/10.1038/s41467-022-29939-5
work_keys_str_mv AT batznersimon e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT musaelianalbert e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT sunlixin e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT geigermario e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT mailoajonathanp e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT kornbluthmordechai e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT molinarinicola e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT smidttesse e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials
AT kozinskyboris e3equivariantgraphneuralnetworksfordataefficientandaccurateinteratomicpotentials