Cargando…
Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography
PURPOSE: The purpose of this study was to evaluate whether deep learning reconstruction (DLR) improves the image quality of intracranial magnetic resonance angiography (MRA) at 1.5 T. MATERIALS AND METHODS: In this retrospective study, MRA images of 40 patients (21 males and 19 females; mean age, 65...
Autores principales: | Yasaka, Koichiro, Akai, Hiroyuki, Sugawara, Haruto, Tajima, Taku, Akahane, Masaaki, Yoshioka, Naoki, Kabasawa, Hiroyuki, Miyo, Rintaro, Ohtomo, Kuni, Abe, Osamu, Kiryu, Shigeru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068615/ https://www.ncbi.nlm.nih.gov/pubmed/34851499 http://dx.doi.org/10.1007/s11604-021-01225-2 |
Ejemplares similares
-
Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study
por: Akai, Hiroyuki, et al.
Publicado: (2022) -
Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
por: Akai, Hiroyuki, et al.
Publicado: (2023) -
Application of CT texture analysis to assess the localization of primary aldosteronism
por: Akai, Hiroyuki, et al.
Publicado: (2020) -
Computed tomography and magnetic resonance imaging of a plexiform angiomyxoid myofibroblastic tumor: a case report
por: Akai, Hiroyuki, et al.
Publicado: (2017) -
Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability
por: Yasaka, Koichiro, et al.
Publicado: (2017)