Cargando…

Superconducting spintronic tunnel diode

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart,...

Descripción completa

Detalles Bibliográficos
Autores principales: Strambini, E., Spies, M., Ligato, N., Ilić, S., Rouco, M., González-Orellana, Carmen, Ilyn, Maxim, Rogero, Celia, Bergeret, F. S., Moodera, J. S., Virtanen, P., Heikkilä, T. T., Giazotto, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068691/
https://www.ncbi.nlm.nih.gov/pubmed/35508475
http://dx.doi.org/10.1038/s41467-022-29990-2
_version_ 1784700271761293312
author Strambini, E.
Spies, M.
Ligato, N.
Ilić, S.
Rouco, M.
González-Orellana, Carmen
Ilyn, Maxim
Rogero, Celia
Bergeret, F. S.
Moodera, J. S.
Virtanen, P.
Heikkilä, T. T.
Giazotto, F.
author_facet Strambini, E.
Spies, M.
Ligato, N.
Ilić, S.
Rouco, M.
González-Orellana, Carmen
Ilyn, Maxim
Rogero, Celia
Bergeret, F. S.
Moodera, J. S.
Virtanen, P.
Heikkilä, T. T.
Giazotto, F.
author_sort Strambini, E.
collection PubMed
description Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 μV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.
format Online
Article
Text
id pubmed-9068691
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90686912022-05-05 Superconducting spintronic tunnel diode Strambini, E. Spies, M. Ligato, N. Ilić, S. Rouco, M. González-Orellana, Carmen Ilyn, Maxim Rogero, Celia Bergeret, F. S. Moodera, J. S. Virtanen, P. Heikkilä, T. T. Giazotto, F. Nat Commun Article Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 μV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics. Nature Publishing Group UK 2022-05-04 /pmc/articles/PMC9068691/ /pubmed/35508475 http://dx.doi.org/10.1038/s41467-022-29990-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Strambini, E.
Spies, M.
Ligato, N.
Ilić, S.
Rouco, M.
González-Orellana, Carmen
Ilyn, Maxim
Rogero, Celia
Bergeret, F. S.
Moodera, J. S.
Virtanen, P.
Heikkilä, T. T.
Giazotto, F.
Superconducting spintronic tunnel diode
title Superconducting spintronic tunnel diode
title_full Superconducting spintronic tunnel diode
title_fullStr Superconducting spintronic tunnel diode
title_full_unstemmed Superconducting spintronic tunnel diode
title_short Superconducting spintronic tunnel diode
title_sort superconducting spintronic tunnel diode
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068691/
https://www.ncbi.nlm.nih.gov/pubmed/35508475
http://dx.doi.org/10.1038/s41467-022-29990-2
work_keys_str_mv AT strambinie superconductingspintronictunneldiode
AT spiesm superconductingspintronictunneldiode
AT ligaton superconductingspintronictunneldiode
AT ilics superconductingspintronictunneldiode
AT roucom superconductingspintronictunneldiode
AT gonzalezorellanacarmen superconductingspintronictunneldiode
AT ilynmaxim superconductingspintronictunneldiode
AT rogerocelia superconductingspintronictunneldiode
AT bergeretfs superconductingspintronictunneldiode
AT mooderajs superconductingspintronictunneldiode
AT virtanenp superconductingspintronictunneldiode
AT heikkilatt superconductingspintronictunneldiode
AT giazottof superconductingspintronictunneldiode