Cargando…
Color-preserving passive radiative cooling for an actively temperature-regulated enclosure
Active temperature control devices are widely used for the thermal management of enclosures, including vehicles and buildings. Passive radiative cooling has been extensively studied; however, its integration with existing actively temperature regulated and decorative enclosures has slipped out of th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068694/ https://www.ncbi.nlm.nih.gov/pubmed/35508472 http://dx.doi.org/10.1038/s41377-022-00810-y |
Sumario: | Active temperature control devices are widely used for the thermal management of enclosures, including vehicles and buildings. Passive radiative cooling has been extensively studied; however, its integration with existing actively temperature regulated and decorative enclosures has slipped out of the research at status quo. Here, we present a photonic-engineered dual-side thermal management strategy for reducing the active power consumption of the existing temperature-regulated enclosure without sacrificing its aesthetics. By coating the exterior and interior of the enclosure roof with two visible-transparent films with distinctive wavelength-selectivity, simultaneous control over the energy exchange among the enclosure with the hot sun, the cold outer space, the atmosphere, and the active cooler can be implemented. A power-saving of up to 63% for active coolers of the enclosure is experimentally demonstrated by measuring the heat flux compared to the ordinary enclosure when the set temperature is around 26°C. This photonic-engineered dual-side thermal management strategy offers facile integration with the existing enclosures and represents a new paradigm toward carbon neutrality. |
---|