Cargando…

A catalogue with semantic annotations makes multilabel datasets FAIR

Multilabel classification (MLC) is a machine learning task where the goal is to learn to label an example with multiple labels simultaneously. It receives increasing interest from the machine learning community, as evidenced by the increasing number of papers and methods that appear in the literatur...

Descripción completa

Detalles Bibliográficos
Autores principales: Kostovska, Ana, Bogatinovski, Jasmin, Džeroski, Sašo, Kocev, Dragi, Panov, Panče
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068705/
https://www.ncbi.nlm.nih.gov/pubmed/35508507
http://dx.doi.org/10.1038/s41598-022-11316-3
Descripción
Sumario:Multilabel classification (MLC) is a machine learning task where the goal is to learn to label an example with multiple labels simultaneously. It receives increasing interest from the machine learning community, as evidenced by the increasing number of papers and methods that appear in the literature. Hence, ensuring proper, correct, robust, and trustworthy benchmarking is of utmost importance for the further development of the field. We believe that this can be achieved by adhering to the recently emerged data management standards, such as the FAIR (Findable, Accessible, Interoperable, and Reusable) and TRUST (Transparency, Responsibility, User focus, Sustainability, and Technology) principles. We introduce an ontology-based online catalogue of MLC datasets originating from various application domains following these principles. The catalogue extensively describes many MLC datasets with comprehensible meta-features, MLC-specific semantic descriptions, and different data provenance information. The MLC data catalogue is available at: http://semantichub.ijs.si/MLCdatasets.