Cargando…
Sparse representations of high dimensional neural data
Conventional Vector Autoregressive (VAR) modelling methods applied to high dimensional neural time series data result in noisy solutions that are dense or have a large number of spurious coefficients. This reduces the speed and accuracy of auxiliary computations downstream and inflates the time requ...
Autores principales: | Mody, Sandeep K., Rangarajan, Govindan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068763/ https://www.ncbi.nlm.nih.gov/pubmed/35508638 http://dx.doi.org/10.1038/s41598-022-10459-7 |
Ejemplares similares
-
Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data
por: Rangarajan, Prashant, et al.
Publicado: (2019) -
Sparse representation approaches for the classification of high-dimensional biological data
por: Li, Yifeng, et al.
Publicado: (2013) -
Neural correlates of sparse coding and dimensionality reduction
por: Beyeler, Michael, et al.
Publicado: (2019) -
Robustness of Sparsely Distributed Representations to Adversarial Attacks in Deep Neural Networks
por: Sardar, Nida, et al.
Publicado: (2023) -
Categorical Data Analysis for High-Dimensional Sparse Gene Expression Data
por: Dousti Mousavi, Niloufar, et al.
Publicado: (2023)