Cargando…
Studying and mitigating the effects of data drifts on ML model performance at the example of chemical toxicity data
Machine learning models are widely applied to predict molecular properties or the biological activity of small molecules on a specific protein. Models can be integrated in a conformal prediction (CP) framework which adds a calibration step to estimate the confidence of the predictions. CP models pre...
Autores principales: | Morger, Andrea, Garcia de Lomana, Marina, Norinder, Ulf, Svensson, Fredrik, Kirchmair, Johannes, Mathea, Miriam, Volkamer, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068909/ https://www.ncbi.nlm.nih.gov/pubmed/35508546 http://dx.doi.org/10.1038/s41598-022-09309-3 |
Ejemplares similares
-
ChemBioSim: Enhancing Conformal Prediction of In Vivo
Toxicity by Use of Predicted Bioactivities
por: Garcia de Lomana, Marina, et al.
Publicado: (2021) -
Assessing the calibration in toxicological in vitro models with conformal prediction
por: Morger, Andrea, et al.
Publicado: (2021) -
KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development
por: Morger, Andrea, et al.
Publicado: (2020) -
TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data
por: Sydow, Dominique, et al.
Publicado: (2019) -
Predicting the Skin Sensitization Potential of Small Molecules with Machine Learning Models Trained on Biologically Meaningful Descriptors
por: Wilm, Anke, et al.
Publicado: (2021)