Cargando…
Progressive compressive sensing of large images with multiscale deep learning reconstruction
Compressive sensing (CS) is a sub-Nyquist sampling framework that has been employed to improve the performance of numerous imaging applications during the last 15 years. Yet, its application for large and high-resolution imaging remains challenging in terms of the computation and acquisition effort...
Autores principales: | Kravets, Vladislav, Stern, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068919/ https://www.ncbi.nlm.nih.gov/pubmed/35508516 http://dx.doi.org/10.1038/s41598-022-11401-7 |
Ejemplares similares
-
Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain
por: Ouchi, Shohei, et al.
Publicado: (2020) -
Super-compression of large electron microscopy time series by deep compressive sensing learning
por: Zheng, Siming, et al.
Publicado: (2021) -
Image Encryption Scheme Based on Multiscale Block Compressed Sensing and Markov Model
por: Shi, Yuandi, et al.
Publicado: (2021) -
Infrared Image Super Resolution by Combining Compressive Sensing and Deep Learning
por: Zhang, Xudong, et al.
Publicado: (2018) -
Deep Compressed Sensing for Learning Submodular Functions
por: Tsai, Yu-Chung, et al.
Publicado: (2020)