Cargando…
A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low v...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068948/ https://www.ncbi.nlm.nih.gov/pubmed/35530324 http://dx.doi.org/10.3389/fonc.2022.786154 |
_version_ | 1784700328989425664 |
---|---|
author | Gockley, Allison Pagacz, Konrad Fiascone, Stephen Stawiski, Konrad Holub, Nicole Hasselblatt, Kathleen Cramer, Daniel W. Fendler, Wojciech Chowdhury, Dipanjan Elias, Kevin M. |
author_facet | Gockley, Allison Pagacz, Konrad Fiascone, Stephen Stawiski, Konrad Holub, Nicole Hasselblatt, Kathleen Cramer, Daniel W. Fendler, Wojciech Chowdhury, Dipanjan Elias, Kevin M. |
author_sort | Gockley, Allison |
collection | PubMed |
description | Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low volume disease and applied the model to sera from 75 early-stage ovarian cancer cases age-matched to 200 benign adnexal masses or healthy controls. The 14-miRNA model efficiently discriminated tumor bearing animals from controls with 100% sensitivity down to tumor inoculums of 50,000 cells. Among early-stage patient samples, the model performed well with 73% sensitivity at 91% specificity. Applied to a population with 1% disease prevalence, we hypothesize the model would detect most early-stage ovarian cancers while maintaining a negative predictive value of 99.97% (95% CI 99.95%-99.98%). Overall, this supports the concept that miRNAs may be useful as screening markers for early-stage disease. |
format | Online Article Text |
id | pubmed-9068948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90689482022-05-05 A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers Gockley, Allison Pagacz, Konrad Fiascone, Stephen Stawiski, Konrad Holub, Nicole Hasselblatt, Kathleen Cramer, Daniel W. Fendler, Wojciech Chowdhury, Dipanjan Elias, Kevin M. Front Oncol Oncology Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low volume disease and applied the model to sera from 75 early-stage ovarian cancer cases age-matched to 200 benign adnexal masses or healthy controls. The 14-miRNA model efficiently discriminated tumor bearing animals from controls with 100% sensitivity down to tumor inoculums of 50,000 cells. Among early-stage patient samples, the model performed well with 73% sensitivity at 91% specificity. Applied to a population with 1% disease prevalence, we hypothesize the model would detect most early-stage ovarian cancers while maintaining a negative predictive value of 99.97% (95% CI 99.95%-99.98%). Overall, this supports the concept that miRNAs may be useful as screening markers for early-stage disease. Frontiers Media S.A. 2022-04-21 /pmc/articles/PMC9068948/ /pubmed/35530324 http://dx.doi.org/10.3389/fonc.2022.786154 Text en Copyright © 2022 Gockley, Pagacz, Fiascone, Stawiski, Holub, Hasselblatt, Cramer, Fendler, Chowdhury and Elias https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Gockley, Allison Pagacz, Konrad Fiascone, Stephen Stawiski, Konrad Holub, Nicole Hasselblatt, Kathleen Cramer, Daniel W. Fendler, Wojciech Chowdhury, Dipanjan Elias, Kevin M. A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title | A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title_full | A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title_fullStr | A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title_full_unstemmed | A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title_short | A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers |
title_sort | translational model to improve early detection of epithelial ovarian cancers |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068948/ https://www.ncbi.nlm.nih.gov/pubmed/35530324 http://dx.doi.org/10.3389/fonc.2022.786154 |
work_keys_str_mv | AT gockleyallison atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT pagaczkonrad atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT fiasconestephen atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT stawiskikonrad atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT holubnicole atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT hasselblattkathleen atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT cramerdanielw atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT fendlerwojciech atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT chowdhurydipanjan atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT eliaskevinm atranslationalmodeltoimproveearlydetectionofepithelialovariancancers AT gockleyallison translationalmodeltoimproveearlydetectionofepithelialovariancancers AT pagaczkonrad translationalmodeltoimproveearlydetectionofepithelialovariancancers AT fiasconestephen translationalmodeltoimproveearlydetectionofepithelialovariancancers AT stawiskikonrad translationalmodeltoimproveearlydetectionofepithelialovariancancers AT holubnicole translationalmodeltoimproveearlydetectionofepithelialovariancancers AT hasselblattkathleen translationalmodeltoimproveearlydetectionofepithelialovariancancers AT cramerdanielw translationalmodeltoimproveearlydetectionofepithelialovariancancers AT fendlerwojciech translationalmodeltoimproveearlydetectionofepithelialovariancancers AT chowdhurydipanjan translationalmodeltoimproveearlydetectionofepithelialovariancancers AT eliaskevinm translationalmodeltoimproveearlydetectionofepithelialovariancancers |