Cargando…

A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers

Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low v...

Descripción completa

Detalles Bibliográficos
Autores principales: Gockley, Allison, Pagacz, Konrad, Fiascone, Stephen, Stawiski, Konrad, Holub, Nicole, Hasselblatt, Kathleen, Cramer, Daniel W., Fendler, Wojciech, Chowdhury, Dipanjan, Elias, Kevin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068948/
https://www.ncbi.nlm.nih.gov/pubmed/35530324
http://dx.doi.org/10.3389/fonc.2022.786154
_version_ 1784700328989425664
author Gockley, Allison
Pagacz, Konrad
Fiascone, Stephen
Stawiski, Konrad
Holub, Nicole
Hasselblatt, Kathleen
Cramer, Daniel W.
Fendler, Wojciech
Chowdhury, Dipanjan
Elias, Kevin M.
author_facet Gockley, Allison
Pagacz, Konrad
Fiascone, Stephen
Stawiski, Konrad
Holub, Nicole
Hasselblatt, Kathleen
Cramer, Daniel W.
Fendler, Wojciech
Chowdhury, Dipanjan
Elias, Kevin M.
author_sort Gockley, Allison
collection PubMed
description Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low volume disease and applied the model to sera from 75 early-stage ovarian cancer cases age-matched to 200 benign adnexal masses or healthy controls. The 14-miRNA model efficiently discriminated tumor bearing animals from controls with 100% sensitivity down to tumor inoculums of 50,000 cells. Among early-stage patient samples, the model performed well with 73% sensitivity at 91% specificity. Applied to a population with 1% disease prevalence, we hypothesize the model would detect most early-stage ovarian cancers while maintaining a negative predictive value of 99.97% (95% CI 99.95%-99.98%). Overall, this supports the concept that miRNAs may be useful as screening markers for early-stage disease.
format Online
Article
Text
id pubmed-9068948
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-90689482022-05-05 A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers Gockley, Allison Pagacz, Konrad Fiascone, Stephen Stawiski, Konrad Holub, Nicole Hasselblatt, Kathleen Cramer, Daniel W. Fendler, Wojciech Chowdhury, Dipanjan Elias, Kevin M. Front Oncol Oncology Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low volume disease and applied the model to sera from 75 early-stage ovarian cancer cases age-matched to 200 benign adnexal masses or healthy controls. The 14-miRNA model efficiently discriminated tumor bearing animals from controls with 100% sensitivity down to tumor inoculums of 50,000 cells. Among early-stage patient samples, the model performed well with 73% sensitivity at 91% specificity. Applied to a population with 1% disease prevalence, we hypothesize the model would detect most early-stage ovarian cancers while maintaining a negative predictive value of 99.97% (95% CI 99.95%-99.98%). Overall, this supports the concept that miRNAs may be useful as screening markers for early-stage disease. Frontiers Media S.A. 2022-04-21 /pmc/articles/PMC9068948/ /pubmed/35530324 http://dx.doi.org/10.3389/fonc.2022.786154 Text en Copyright © 2022 Gockley, Pagacz, Fiascone, Stawiski, Holub, Hasselblatt, Cramer, Fendler, Chowdhury and Elias https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Gockley, Allison
Pagacz, Konrad
Fiascone, Stephen
Stawiski, Konrad
Holub, Nicole
Hasselblatt, Kathleen
Cramer, Daniel W.
Fendler, Wojciech
Chowdhury, Dipanjan
Elias, Kevin M.
A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title_full A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title_fullStr A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title_full_unstemmed A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title_short A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
title_sort translational model to improve early detection of epithelial ovarian cancers
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068948/
https://www.ncbi.nlm.nih.gov/pubmed/35530324
http://dx.doi.org/10.3389/fonc.2022.786154
work_keys_str_mv AT gockleyallison atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT pagaczkonrad atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT fiasconestephen atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT stawiskikonrad atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT holubnicole atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT hasselblattkathleen atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT cramerdanielw atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT fendlerwojciech atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT chowdhurydipanjan atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT eliaskevinm atranslationalmodeltoimproveearlydetectionofepithelialovariancancers
AT gockleyallison translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT pagaczkonrad translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT fiasconestephen translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT stawiskikonrad translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT holubnicole translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT hasselblattkathleen translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT cramerdanielw translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT fendlerwojciech translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT chowdhurydipanjan translationalmodeltoimproveearlydetectionofepithelialovariancancers
AT eliaskevinm translationalmodeltoimproveearlydetectionofepithelialovariancancers