Cargando…
A Translational Model to Improve Early Detection of Epithelial Ovarian Cancers
Neural network analyses of circulating miRNAs have shown potential as non-invasive screening tests for ovarian cancer. A clinically useful test would detect occult disease when complete cytoreduction is most feasible. Here we used murine xenografts to sensitize a neural network model to detect low v...
Autores principales: | Gockley, Allison, Pagacz, Konrad, Fiascone, Stephen, Stawiski, Konrad, Holub, Nicole, Hasselblatt, Kathleen, Cramer, Daniel W., Fendler, Wojciech, Chowdhury, Dipanjan, Elias, Kevin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068948/ https://www.ncbi.nlm.nih.gov/pubmed/35530324 http://dx.doi.org/10.3389/fonc.2022.786154 |
Ejemplares similares
-
Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer
por: Elias, Kevin M, et al.
Publicado: (2017) -
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer
por: Brummelhuis, Iris S., et al.
Publicado: (2021) -
A systemic approach to screening high-throughput RT-qPCR data for a suitable set of reference circulating miRNAs
por: Pagacz, Konrad, et al.
Publicado: (2020) -
NormiRazor: tool applying GPU-accelerated computing for determination of internal references in microRNA transcription studies
por: Grabia, Szymon, et al.
Publicado: (2020) -
Validation of EORTC, CUETO, and EAU risk stratification in prediction of recurrence, progression, and death of patients with initially non–muscle‐invasive bladder cancer (NMIBC): A cohort analysis
por: Jobczyk, Mateusz, et al.
Publicado: (2020)