Cargando…
Using interpretable machine learning identify factors contributing to COVID-19 cases in the United States
COVID-19 has been declared as a “pandemic” by the World Health Organization (WHO) and has claimed more than a million lives and over 50 million confirmed cases worldwide as of 7th November 2020. This virus can be curbed in only two ways: vaccination and other by imposing non-pharmaceutical intervent...
Autor principal: | Garg, Ashish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068982/ http://dx.doi.org/10.1016/B978-0-323-90054-6.00008-8 |
Ejemplares similares
-
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
por: Shah, Denis A., et al.
Publicado: (2021) -
An interpretable machine learning approach to identify mechanism of action of antibiotics
por: Mongia, Mihir, et al.
Publicado: (2022) -
An interpretable machine learning framework for diagnosis and prognosis of COVID-19
por: Fan, Yongxian, et al.
Publicado: (2023) -
Interpretable Machine Learning with Python
por: Masis, Serg
Publicado: (2021) -
Interpretable machine learning for genomics
por: Watson, David S.
Publicado: (2021)