Cargando…
Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces
The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069188/ https://www.ncbi.nlm.nih.gov/pubmed/35253395 http://dx.doi.org/10.1002/advs.202200181 |
_version_ | 1784700376651399168 |
---|---|
author | Yves, Simon Rosa, Matheus Inguaggiato Nora Guo, Yuning Gupta, Mohit Ruzzene, Massimo Alù, Andrea |
author_facet | Yves, Simon Rosa, Matheus Inguaggiato Nora Guo, Yuning Gupta, Mohit Ruzzene, Massimo Alù, Andrea |
author_sort | Yves, Simon |
collection | PubMed |
description | The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single‐layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi‐periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single‐layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements. |
format | Online Article Text |
id | pubmed-9069188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90691882022-05-09 Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces Yves, Simon Rosa, Matheus Inguaggiato Nora Guo, Yuning Gupta, Mohit Ruzzene, Massimo Alù, Andrea Adv Sci (Weinh) Research Articles The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single‐layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi‐periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single‐layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements. John Wiley and Sons Inc. 2022-03-06 /pmc/articles/PMC9069188/ /pubmed/35253395 http://dx.doi.org/10.1002/advs.202200181 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Yves, Simon Rosa, Matheus Inguaggiato Nora Guo, Yuning Gupta, Mohit Ruzzene, Massimo Alù, Andrea Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title | Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title_full | Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title_fullStr | Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title_full_unstemmed | Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title_short | Moiré‐Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces |
title_sort | moiré‐driven topological transitions and extreme anisotropy in elastic metasurfaces |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069188/ https://www.ncbi.nlm.nih.gov/pubmed/35253395 http://dx.doi.org/10.1002/advs.202200181 |
work_keys_str_mv | AT yvessimon moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces AT rosamatheusinguaggiatonora moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces AT guoyuning moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces AT guptamohit moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces AT ruzzenemassimo moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces AT aluandrea moiredriventopologicaltransitionsandextremeanisotropyinelasticmetasurfaces |