Cargando…

In Situ Monitored (N, O)‐Doping of Flexible Vertical Graphene Films with High‐Flux Plasma Enhanced Chemical Vapor Deposition for Remarkable Metal‐Free Redox Catalysis Essential to Alkaline Zinc–Air Batteries

Rechargeable zinc–air batteries (ZABs) have attracted great interests for emerging energy applications. Nevertheless, one of the major bottlenecks lies in the fabrication of bifunctional catalysts with high electrochemical activity, high stability, low cost, and free of precious and rare metals. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhiheng, Yu, Yuran, Zhang, Gongkai, Zhang, Yongshang, Guo, Ruxin, Li, Lu, Zhao, Yige, Wang, Zhuo, Shen, Yonglong, Shao, Guosheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069200/
https://www.ncbi.nlm.nih.gov/pubmed/35246956
http://dx.doi.org/10.1002/advs.202200614
Descripción
Sumario:Rechargeable zinc–air batteries (ZABs) have attracted great interests for emerging energy applications. Nevertheless, one of the major bottlenecks lies in the fabrication of bifunctional catalysts with high electrochemical activity, high stability, low cost, and free of precious and rare metals. Herein, a high‐performance metal‐free bifunctional catalyst is synthesized in a single step by regulating radicals within the recently invented high‐flux plasma enhanced chemical vapor deposition (HPECVD) system equipped with in situ plasma diagnostics. Thus‐derived (N, O)‐doped vertical few‐layer graphene film (VGNO) is of high areal population with perfect vertical orientation, tunable catalytic states, and configurations, thus enabling significantly enhanced electrochemical kinetic processes of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with reference to milestone achievements to date. Application of such VGNO to aqueous ZABs (A‐ZABs) and flexible solid‐state ZABs (S‐ZABs) exhibited high discharge power density and excellent cycling stability, which remarkably outperformed ZABs using benchmarked precious‐metal based catalysts. The current work provides a solid basis toward developing low‐cost, resource‐sustainable, and eco‐friendly ZABs without using any metals for outstanding OER and ORR catalysis.