Cargando…
Machine Learning Approach for Preterm Birth Prediction Using Health Records: Systematic Review
BACKGROUND: Preterm birth (PTB), a common pregnancy complication, is responsible for 35% of the 3.1 million pregnancy-related deaths each year and significantly affects around 15 million children annually worldwide. Conventional approaches to predict PTB lack reliable predictive power, leaving >5...
Autores principales: | Sharifi-Heris, Zahra, Laitala, Juho, Airola, Antti, Rahmani, Amir M, Bender, Miriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069277/ https://www.ncbi.nlm.nih.gov/pubmed/35442214 http://dx.doi.org/10.2196/33875 |
Ejemplares similares
-
Heart Rate Variability and Pregnancy Complications: Systematic Review
por: Sharifi-Heris, Zahra, et al.
Publicado: (2023) -
Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
por: Golob, Jonathan L., et al.
Publicado: (2023) -
Machine Learning-Based Prediction Model of Preterm Birth Using Electronic Health Record
por: Sun, Qi, et al.
Publicado: (2022) -
Paracetamol preceding very preterm birth: Is it safe?
por: Laitala, Aliisa, et al.
Publicado: (2022) -
Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
por: Abraham, Abin, et al.
Publicado: (2022)