Cargando…

Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution

Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an e...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xinyi, Zhang, Haoyun, Nose, Takumi, Katase, Takayoshi, Tadano, Terumasa, Ide, Keisuke, Ueda, Shigenori, Hiramatsu, Hidenori, Hosono, Hideo, Kamiya, Toshio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069380/
https://www.ncbi.nlm.nih.gov/pubmed/35257520
http://dx.doi.org/10.1002/advs.202105958
_version_ 1784700417698955264
author He, Xinyi
Zhang, Haoyun
Nose, Takumi
Katase, Takayoshi
Tadano, Terumasa
Ide, Keisuke
Ueda, Shigenori
Hiramatsu, Hidenori
Hosono, Hideo
Kamiya, Toshio
author_facet He, Xinyi
Zhang, Haoyun
Nose, Takumi
Katase, Takayoshi
Tadano, Terumasa
Ide, Keisuke
Ueda, Shigenori
Hiramatsu, Hidenori
Hosono, Hideo
Kamiya, Toshio
author_sort He, Xinyi
collection PubMed
description Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an effective strategy to achieve high σ and low κ simultaneously is reported on p‐type polycrystalline SnSe with isovalent Te ion substitution. The nonequilibrium Sn(Se(1−) (x) Te (x) ) solid solution bulks with x up to 0.4 are synthesized by the two‐step process composed of high‐temperature solid‐state reaction and rapid thermal quenching. The Te ion substitution in SnSe realizes high σ due to the 10(3)‐times increase in hole carrier concentration and effectively reduced lattice κ less than one‐third at room temperature. The large‐size Te ion in Sn(Se(1−) (x) Te (x) ) forms weak Sn—Te bonds, leading to the high‐density formation of hole‐donating Sn vacancies and the reduced phonon frequency and enhanced phonon scattering. This result—doping of large‐size ions beyond the equilibrium limit—proposes a new idea for carrier doping and controlling thermal properties to enhance the ZT of polycrystalline SnSe.
format Online
Article
Text
id pubmed-9069380
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90693802022-05-09 Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution He, Xinyi Zhang, Haoyun Nose, Takumi Katase, Takayoshi Tadano, Terumasa Ide, Keisuke Ueda, Shigenori Hiramatsu, Hidenori Hosono, Hideo Kamiya, Toshio Adv Sci (Weinh) Research Articles Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an effective strategy to achieve high σ and low κ simultaneously is reported on p‐type polycrystalline SnSe with isovalent Te ion substitution. The nonequilibrium Sn(Se(1−) (x) Te (x) ) solid solution bulks with x up to 0.4 are synthesized by the two‐step process composed of high‐temperature solid‐state reaction and rapid thermal quenching. The Te ion substitution in SnSe realizes high σ due to the 10(3)‐times increase in hole carrier concentration and effectively reduced lattice κ less than one‐third at room temperature. The large‐size Te ion in Sn(Se(1−) (x) Te (x) ) forms weak Sn—Te bonds, leading to the high‐density formation of hole‐donating Sn vacancies and the reduced phonon frequency and enhanced phonon scattering. This result—doping of large‐size ions beyond the equilibrium limit—proposes a new idea for carrier doping and controlling thermal properties to enhance the ZT of polycrystalline SnSe. John Wiley and Sons Inc. 2022-03-08 /pmc/articles/PMC9069380/ /pubmed/35257520 http://dx.doi.org/10.1002/advs.202105958 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
He, Xinyi
Zhang, Haoyun
Nose, Takumi
Katase, Takayoshi
Tadano, Terumasa
Ide, Keisuke
Ueda, Shigenori
Hiramatsu, Hidenori
Hosono, Hideo
Kamiya, Toshio
Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title_full Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title_fullStr Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title_full_unstemmed Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title_short Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
title_sort degenerated hole doping and ultra‐low lattice thermal conductivity in polycrystalline snse by nonequilibrium isovalent te substitution
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069380/
https://www.ncbi.nlm.nih.gov/pubmed/35257520
http://dx.doi.org/10.1002/advs.202105958
work_keys_str_mv AT hexinyi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT zhanghaoyun degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT nosetakumi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT katasetakayoshi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT tadanoterumasa degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT idekeisuke degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT uedashigenori degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT hiramatsuhidenori degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT hosonohideo degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution
AT kamiyatoshio degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution