Cargando…
Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an e...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069380/ https://www.ncbi.nlm.nih.gov/pubmed/35257520 http://dx.doi.org/10.1002/advs.202105958 |
_version_ | 1784700417698955264 |
---|---|
author | He, Xinyi Zhang, Haoyun Nose, Takumi Katase, Takayoshi Tadano, Terumasa Ide, Keisuke Ueda, Shigenori Hiramatsu, Hidenori Hosono, Hideo Kamiya, Toshio |
author_facet | He, Xinyi Zhang, Haoyun Nose, Takumi Katase, Takayoshi Tadano, Terumasa Ide, Keisuke Ueda, Shigenori Hiramatsu, Hidenori Hosono, Hideo Kamiya, Toshio |
author_sort | He, Xinyi |
collection | PubMed |
description | Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an effective strategy to achieve high σ and low κ simultaneously is reported on p‐type polycrystalline SnSe with isovalent Te ion substitution. The nonequilibrium Sn(Se(1−) (x) Te (x) ) solid solution bulks with x up to 0.4 are synthesized by the two‐step process composed of high‐temperature solid‐state reaction and rapid thermal quenching. The Te ion substitution in SnSe realizes high σ due to the 10(3)‐times increase in hole carrier concentration and effectively reduced lattice κ less than one‐third at room temperature. The large‐size Te ion in Sn(Se(1−) (x) Te (x) ) forms weak Sn—Te bonds, leading to the high‐density formation of hole‐donating Sn vacancies and the reduced phonon frequency and enhanced phonon scattering. This result—doping of large‐size ions beyond the equilibrium limit—proposes a new idea for carrier doping and controlling thermal properties to enhance the ZT of polycrystalline SnSe. |
format | Online Article Text |
id | pubmed-9069380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90693802022-05-09 Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution He, Xinyi Zhang, Haoyun Nose, Takumi Katase, Takayoshi Tadano, Terumasa Ide, Keisuke Ueda, Shigenori Hiramatsu, Hidenori Hosono, Hideo Kamiya, Toshio Adv Sci (Weinh) Research Articles Tin mono‐selenide (SnSe) exhibits the world record of thermoelectric conversion efficiency ZT in the single crystal form, but the performance of polycrystalline SnSe is restricted by low electronic conductivity (σ) and high thermal conductivity (κ), compared to those of the single crystal. Here an effective strategy to achieve high σ and low κ simultaneously is reported on p‐type polycrystalline SnSe with isovalent Te ion substitution. The nonequilibrium Sn(Se(1−) (x) Te (x) ) solid solution bulks with x up to 0.4 are synthesized by the two‐step process composed of high‐temperature solid‐state reaction and rapid thermal quenching. The Te ion substitution in SnSe realizes high σ due to the 10(3)‐times increase in hole carrier concentration and effectively reduced lattice κ less than one‐third at room temperature. The large‐size Te ion in Sn(Se(1−) (x) Te (x) ) forms weak Sn—Te bonds, leading to the high‐density formation of hole‐donating Sn vacancies and the reduced phonon frequency and enhanced phonon scattering. This result—doping of large‐size ions beyond the equilibrium limit—proposes a new idea for carrier doping and controlling thermal properties to enhance the ZT of polycrystalline SnSe. John Wiley and Sons Inc. 2022-03-08 /pmc/articles/PMC9069380/ /pubmed/35257520 http://dx.doi.org/10.1002/advs.202105958 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles He, Xinyi Zhang, Haoyun Nose, Takumi Katase, Takayoshi Tadano, Terumasa Ide, Keisuke Ueda, Shigenori Hiramatsu, Hidenori Hosono, Hideo Kamiya, Toshio Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title | Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title_full | Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title_fullStr | Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title_full_unstemmed | Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title_short | Degenerated Hole Doping and Ultra‐Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution |
title_sort | degenerated hole doping and ultra‐low lattice thermal conductivity in polycrystalline snse by nonequilibrium isovalent te substitution |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069380/ https://www.ncbi.nlm.nih.gov/pubmed/35257520 http://dx.doi.org/10.1002/advs.202105958 |
work_keys_str_mv | AT hexinyi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT zhanghaoyun degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT nosetakumi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT katasetakayoshi degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT tadanoterumasa degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT idekeisuke degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT uedashigenori degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT hiramatsuhidenori degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT hosonohideo degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution AT kamiyatoshio degeneratedholedopingandultralowlatticethermalconductivityinpolycrystallinesnsebynonequilibriumisovalenttesubstitution |