Cargando…
The Use of Multiple Imputation to Handle Missing Data in Secondary Datasets: Suggested Approaches when Missing Data Results from the Survey Structure
Secondary datasets are used in healthcare research because of its cost advantages, its convenience, and the size of the datasets. However, missing data can cause problems that are difficult to resolve. This manuscript reviews possible causes for missing data, and how to address them. Many researcher...
Autor principal: | Jo, Soojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069597/ https://www.ncbi.nlm.nih.gov/pubmed/35502776 http://dx.doi.org/10.1177/00469580221088627 |
Ejemplares similares
-
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Some Classes of Logarithmic-Type Imputation Techniques for Handling Missing Data
por: Pandey, Awadhesh K., et al.
Publicado: (2021) -
Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures
por: Wirtz, Markus A., et al.
Publicado: (2020) -
Multiple imputation of missing data using SAS
por: Berglund, Patricia A, et al.
Publicado: (2014)