Cargando…

Programmed necroptosis is upregulated in low-grade myelodysplastic syndromes and may play a role in the pathogenesis

Myelodysplastic syndrome (MDS) is characterized by persistent cytopenias and evidence of morphologic dysplasia in the bone marrow (BM). Excessive hematopoietic programmed cell death (PCD) and inflammation have been observed in the bone marrow of patients with MDS, and are thought to play a significa...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Jing, Shi, Qiong, Chen, Heidi, Juskevicius, Ridas, Zinkel, Sandra S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069723/
https://www.ncbi.nlm.nih.gov/pubmed/34563605
http://dx.doi.org/10.1016/j.exphem.2021.09.004
Descripción
Sumario:Myelodysplastic syndrome (MDS) is characterized by persistent cytopenias and evidence of morphologic dysplasia in the bone marrow (BM). Excessive hematopoietic programmed cell death (PCD) and inflammation have been observed in the bone marrow of patients with MDS, and are thought to play a significant role in the pathogenesis of the disease. Necroptosis is a major pathway of PCD that incites inflammation; however, the role of necroptosis in human MDS has not been extensively investigated. To assess PCD status in newly diagnosed MDS, we performed immunofluorescence staining with computational image analysis of formalin-fixed, paraffin-embedded BM core biopsies using cleaved caspase-3 (apoptosis marker) and necroptosis markers (receptor-interacting serine/threonine-protein kinase 1 [RIPK1], phospho-mixed lineage kinase domain-like protein [pMLKL]). Patients with MDS, but not controls without MDS or patients with de novo acute myeloid leukemia, had significantly increased expression of RIPK1 and pMLKL but not cleaved caspase-3, which was most evident in morphologically low-grade MDS (<5% BM blasts) and in MDS with low International Prognostic Scoring System risk score. RIPK1 expression highly correlated with the distribution of CD71(+) erythroid precursors but not with CD34(+) blast cells. We found that necroptosis is upregulated in early/low-grade MDS relative to control participants, warranting further study to define the role of necroptosis in the pathogenesis of MDS and as a potential biomarker for the diagnosis of low-grade MDS.