Cargando…

Comprehensive molecular characterization of hypertension-related genes in cancer

BACKGROUND: During cancer treatment, patients have a significantly higher risk of developing cardiovascular complications such as hypertension. In this study, we investigated the internal relationships between hypertension and different types of cancer. METHODS: First, we comprehensively characteriz...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yanan, Shi, Chunpeng, Tian, Songyu, Zhi, Fengnan, Shen, Xiuyun, Shang, Desi, Tian, Jinwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069779/
https://www.ncbi.nlm.nih.gov/pubmed/35513851
http://dx.doi.org/10.1186/s40959-022-00136-z
Descripción
Sumario:BACKGROUND: During cancer treatment, patients have a significantly higher risk of developing cardiovascular complications such as hypertension. In this study, we investigated the internal relationships between hypertension and different types of cancer. METHODS: First, we comprehensively characterized the involvement of 10 hypertension-related genes across 33 types of cancer. The somatic copy number alteration (CNA) and single nucleotide variant (SNV) of each gene were identified for each type of cancer. Then, the expression patterns of hypertension-related genes were analyzed across 14 types of cancer. The hypertension-related genes were aberrantly expressed in different types of cancer, and some were associated with the overall survival of patients or the cancer stage. Subsequently, the interactions between hypertension-related genes and clinically actionable genes (CAGs) were identified by analyzing the co-expressions and protein–protein interactions. RESULTS: We found that certain hypertension-related genes were correlated with CAGs. Next, the pathways associated with hypertension-related genes were identified. The positively correlated pathways included epithelial to mesenchymal transition, hormone androgen receptor, and receptor tyrosine kinase, and the negatively correlated pathways included apoptosis, cell cycle, and DNA damage response. Finally, the correlations between hypertension-related genes and drug sensitivity were evaluated for different drugs and different types of cancer. The hypertension-related genes were all positively or negatively correlated with the resistance of cancer to the majority of anti-cancer drugs. These results highlight the importance of hypertension-related genes in cancer. CONCLUSIONS: This study provides an approach to characterize the relationship between hypertension-related genes and cancers in the post-genomic era. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40959-022-00136-z.