Cargando…
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
BACKGROUND: With the development of modern sequencing technology, hundreds of thousands of single-cell RNA-sequencing (scRNA-seq) profiles allow to explore the heterogeneity in the cell level, but it faces the challenges of high dimensions and high sparsity. Dimensionality reduction is essential for...
Autores principales: | Dong, Jiayi, Zhang, Yin, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069784/ https://www.ncbi.nlm.nih.gov/pubmed/35513780 http://dx.doi.org/10.1186/s12859-022-04703-0 |
Ejemplares similares
-
scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
por: Wang, Zile, et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Developing Sustainable Classification of Diseases via Deep Learning and Semi-Supervised Learning
por: Yin, Chunwu, et al.
Publicado: (2020) -
Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information
por: Dong, Li, et al.
Publicado: (2020)