Cargando…
A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction
BACKGROUND: To reduce drug side effects and enhance their therapeutic effect compared with single drugs, drug combination research, combining two or more drugs, is highly important. Conducting in-vivo and in-vitro experiments on a vast number of drug combinations incurs astronomical time and cost. T...
Autores principales: | Shim, Yongsun, Lee, Munhwan, Kim, Pil-Jong, Kim, Hong-Gee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069794/ https://www.ncbi.nlm.nih.gov/pubmed/35513784 http://dx.doi.org/10.1186/s12859-022-04698-8 |
Ejemplares similares
-
Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery
por: Lee, Munhwan, et al.
Publicado: (2019) -
DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
por: Preuer, Kristina, et al.
Publicado: (2018) -
SynergyFinder 2.0: visual analytics of multi-drug combination synergies
por: Ianevski, Aleksandr, et al.
Publicado: (2020) -
Discovering Anti-platelet Drug Combinations with an Integrated Model
of Activator-Inhibitor Relationships, Activator-Activator Synergies and
Inhibitor-Inhibitor Synergies
por: Lombardi, Federica, et al.
Publicado: (2015) -
Correction to ‘SynergyFinder 2.0: visual analytics of multi-drug combination synergies’
Publicado: (2022)