Cargando…
High-sulfur coal-derived nitrogen, sulfur dual-doped carbon as an economical metal-free electrocatalyst for oxygen reduction reaction
The search for an economical electrocatalyst for oxygen reduction reaction (ORR) is a worldwide issue for fuel cells and metal–air batteries. Herein, we used cheap and available high-sulfur inferior coal as the single precursor to synthesize an N, S dual-doped carbon (NSC) metal-free electrocatalyst...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069900/ https://www.ncbi.nlm.nih.gov/pubmed/35528676 http://dx.doi.org/10.1039/c9ra03720a |
Sumario: | The search for an economical electrocatalyst for oxygen reduction reaction (ORR) is a worldwide issue for fuel cells and metal–air batteries. Herein, we used cheap and available high-sulfur inferior coal as the single precursor to synthesize an N, S dual-doped carbon (NSC) metal-free electrocatalyst for the ORR. The N, S dual-doped carbon (NSC), prepared at 800 °C (NSC800), possessed a large specific surface area of 942 m(2) g(−1), with an amorphous carbon structure and more defects than the others. Furthermore, it contains 1.06 at% N and 2.24 at% S, where N is resolved into pyridinic-N, pyrrolic-N, and graphitic-N. For the electrochemical behavior, NSC800 displayed a good ORR electrocatalytic activity, with the ORR peak potential at −0.245 V (vs. SCE) and half-wave potential (E(1/2)) at −0.28 V (vs. SCE) in an alkaline solution. This study not only gives an original and facile method to prepare an economical ORR electrocatalyst but also provides a novel clean-use of high-sulfur inferior coal. |
---|