Cargando…
LHC physics dataset for unsupervised New Physics detection at 40 MHz
In the particle detectors at the Large Hadron Collider, hundreds of millions of proton-proton collisions are produced every second. If one could store the whole data stream produced in these collisions, tens of terabytes of data would be written to disk every second. The general-purpose experiments...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070018/ https://www.ncbi.nlm.nih.gov/pubmed/35351897 http://dx.doi.org/10.1038/s41597-022-01187-8 |
Sumario: | In the particle detectors at the Large Hadron Collider, hundreds of millions of proton-proton collisions are produced every second. If one could store the whole data stream produced in these collisions, tens of terabytes of data would be written to disk every second. The general-purpose experiments ATLAS and CMS reduce this overwhelming data volume to a sustainable level, by deciding in real-time whether each collision event should be kept for further analysis or be discarded. We introduce a dataset of proton collision events that emulates a typical data stream collected by such a real-time processing system, pre-filtered by requiring the presence of at least one electron or muon. This dataset could be used to develop novel event selection strategies and assess their sensitivity to new phenomena. In particular, we intend to stimulate a community-based effort towards the design of novel algorithms for performing unsupervised new physics detection, customized to fit the bandwidth, latency and computational resource constraints of the real-time event selection system of a typical particle detector. |
---|