Cargando…
On the road to cost-effective fossil fuel desulfurization by Gordonia alkanivorans strain 1B
Biodesulfurization (BDS) is an ecofriendly process that uses microorganisms to efficiently remove sulfur from fossil fuels. To make the BDS process economically competitive with the deep hydrodesulfurization process, which is currently used in the oil industry, it is necessary to improve several fac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070030/ https://www.ncbi.nlm.nih.gov/pubmed/35530089 http://dx.doi.org/10.1039/c9ra03601f |
Sumario: | Biodesulfurization (BDS) is an ecofriendly process that uses microorganisms to efficiently remove sulfur from fossil fuels. To make the BDS process economically competitive with the deep hydrodesulfurization process, which is currently used in the oil industry, it is necessary to improve several factors. One crucial limitation to be overcome, common within many other biotechnological processes, is the cost of the culture medium. Therefore, an important line of work to make BDS scale-up less costly is the optimization of the culture medium composition aiming to reduce operating expenses and maximize biocatalyst production. In this context, the main goal of this study was on the minimization of inorganic key components of sulfur-free mineral (SFM) medium in order to get the maximal production of efficient desulfurizing biocatalysts. Hence, a set of assays was carried out to develop an optimal culture medium containing minimal amounts of nitrogen (N) and magnesium (Mg) sources and trace elements solution (TES). These assays allowed the design of a SFMM (SFM minimum) medium containing 85% N-source, 25% Mg-source and 25% TES. Further validation consisted of testing this minimized medium using two carbon sources: the commercial C-source (glucose + fructose) versus Jerusalem artichoke juice (JAJ) as a cheaper alternative. SFMM medium allowed microbial cells to almost duplicate their specific desulfurization rate (q(2-HBP)) for both tested C-sources, namely from 2.15 to 3.39 μmoL g(−1) (DCW) h(−1) for Fru + Glu and from 1.91 to 3.58 μmoL g(−1) (DCW) h(−1) for JAJ, achieving a similar net 2-hydroxybiphenyl produced per g of consumed sugar (∼17 μmoL g(−1)). These results point out the great advantage of using cheaper culture medium that in addition enhances the bioprocess effectiveness, paving the way to a sustainable scale-up for fossil fuel BDS. |
---|