Cargando…
The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes
A noncrystalline Ni–B alloy in the shape of nanotubes has demonstrated its superior catalytic performance for some hydrogenation reactions. Remarkable synergistic effects have been observed in many reactions when bimetallic catalysts were used; however, bimetallic noncrystalline alloy nanotubes are...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070375/ https://www.ncbi.nlm.nih.gov/pubmed/35531008 http://dx.doi.org/10.1039/c9ra05540a |
_version_ | 1784700625098899456 |
---|---|
author | Mo, Min Xie, Mingjiang Guo, Xiaojuan Ding, Weiping Guo, Xuefeng |
author_facet | Mo, Min Xie, Mingjiang Guo, Xiaojuan Ding, Weiping Guo, Xuefeng |
author_sort | Mo, Min |
collection | PubMed |
description | A noncrystalline Ni–B alloy in the shape of nanotubes has demonstrated its superior catalytic performance for some hydrogenation reactions. Remarkable synergistic effects have been observed in many reactions when bimetallic catalysts were used; however, bimetallic noncrystalline alloy nanotubes are far less investigated. Here, we report a simple acetone-assisted lamellar liquid crystal approach for synthesizing a series of bimetallic Ni–Co–B nanotubes and investigate their catalytic performances. The dilution effect of acetone on liquid crystals was characterized by small-angle X-ray diffraction (SAXRD) and scanning electron microscopy (SEM). The Ni/Co molar ratio of the catalyst was varied to study the composition, porous structure, electronic interaction, and catalytic efficiency. In the liquid-phase hydrogenation of p-chloronitrobenzene, the as-prepared noncrystalline alloy Ni–Co–B nanotubes exhibited higher catalytic activity and increased stability as compared to Ni–B and Co–B alloy nanotubes due to electronic interactions between the nickel and cobalt. The excellent hydrogenation performance of the Ni–Co–B nanotubes was attributed to their high specific surface area and the characteristic confinement effects, compared with Ni–Co–B nanoparticles. |
format | Online Article Text |
id | pubmed-9070375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90703752022-05-05 The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes Mo, Min Xie, Mingjiang Guo, Xiaojuan Ding, Weiping Guo, Xuefeng RSC Adv Chemistry A noncrystalline Ni–B alloy in the shape of nanotubes has demonstrated its superior catalytic performance for some hydrogenation reactions. Remarkable synergistic effects have been observed in many reactions when bimetallic catalysts were used; however, bimetallic noncrystalline alloy nanotubes are far less investigated. Here, we report a simple acetone-assisted lamellar liquid crystal approach for synthesizing a series of bimetallic Ni–Co–B nanotubes and investigate their catalytic performances. The dilution effect of acetone on liquid crystals was characterized by small-angle X-ray diffraction (SAXRD) and scanning electron microscopy (SEM). The Ni/Co molar ratio of the catalyst was varied to study the composition, porous structure, electronic interaction, and catalytic efficiency. In the liquid-phase hydrogenation of p-chloronitrobenzene, the as-prepared noncrystalline alloy Ni–Co–B nanotubes exhibited higher catalytic activity and increased stability as compared to Ni–B and Co–B alloy nanotubes due to electronic interactions between the nickel and cobalt. The excellent hydrogenation performance of the Ni–Co–B nanotubes was attributed to their high specific surface area and the characteristic confinement effects, compared with Ni–Co–B nanoparticles. The Royal Society of Chemistry 2019-08-23 /pmc/articles/PMC9070375/ /pubmed/35531008 http://dx.doi.org/10.1039/c9ra05540a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Mo, Min Xie, Mingjiang Guo, Xiaojuan Ding, Weiping Guo, Xuefeng The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title | The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title_full | The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title_fullStr | The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title_full_unstemmed | The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title_short | The promoted catalytic hydrogenation performance of bimetallic Ni–Co–B noncrystalline alloy nanotubes |
title_sort | promoted catalytic hydrogenation performance of bimetallic ni–co–b noncrystalline alloy nanotubes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070375/ https://www.ncbi.nlm.nih.gov/pubmed/35531008 http://dx.doi.org/10.1039/c9ra05540a |
work_keys_str_mv | AT momin thepromotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT xiemingjiang thepromotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT guoxiaojuan thepromotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT dingweiping thepromotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT guoxuefeng thepromotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT momin promotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT xiemingjiang promotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT guoxiaojuan promotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT dingweiping promotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes AT guoxuefeng promotedcatalytichydrogenationperformanceofbimetallicnicobnoncrystallinealloynanotubes |