Cargando…
Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage
Prussian blue analogs (PBAs) are a type of metal–organic framework and have drawn significant attention recently. To date, most are constructed with divalent transition metal ions coordinated to the N end of a cyanide bridge. In this report, we studied a trivalent gallium ion-based Ga hexacyanocobal...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070449/ https://www.ncbi.nlm.nih.gov/pubmed/35528589 http://dx.doi.org/10.1039/c9ra03746b |
_version_ | 1784700642301837312 |
---|---|
author | Zhang, Kaiqiang Lee, Tae Hyung Bubach, Bailey Ostadhassan, Mehdi Jang, Ho Won Choi, Ji-Won Shokouhimehr, Mohammadreza |
author_facet | Zhang, Kaiqiang Lee, Tae Hyung Bubach, Bailey Ostadhassan, Mehdi Jang, Ho Won Choi, Ji-Won Shokouhimehr, Mohammadreza |
author_sort | Zhang, Kaiqiang |
collection | PubMed |
description | Prussian blue analogs (PBAs) are a type of metal–organic framework and have drawn significant attention recently. To date, most are constructed with divalent transition metal ions coordinated to the N end of a cyanide bridge. In this report, we studied a trivalent gallium ion-based Ga hexacyanocobaltate (GaHCCo), which depicted a face-centered cubic crystal structure. In addition, the synthesized GaHCCo was demonstrated as a cathode material of lithium-ion batteries (LIBs) and was found to exhibit long-term stability, having a capacity retention of 75% after 3000 cycles of repeated charge–discharge cycling and an extremely high coulombic efficiency of 98%, which was achieved because of a solid-state diffusion controlled Li-ion storage process. After ex situ XRD analysis on the different charge stages, the Li-ion storage in the GaHCCo was attributed to the Co species via the formation of a Li/Co compound. This work will pave the way toward the study of PBAs constructed with trivalent metal ions and provide more insights into the development of high-performance LIBs in the future. |
format | Online Article Text |
id | pubmed-9070449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90704492022-05-05 Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage Zhang, Kaiqiang Lee, Tae Hyung Bubach, Bailey Ostadhassan, Mehdi Jang, Ho Won Choi, Ji-Won Shokouhimehr, Mohammadreza RSC Adv Chemistry Prussian blue analogs (PBAs) are a type of metal–organic framework and have drawn significant attention recently. To date, most are constructed with divalent transition metal ions coordinated to the N end of a cyanide bridge. In this report, we studied a trivalent gallium ion-based Ga hexacyanocobaltate (GaHCCo), which depicted a face-centered cubic crystal structure. In addition, the synthesized GaHCCo was demonstrated as a cathode material of lithium-ion batteries (LIBs) and was found to exhibit long-term stability, having a capacity retention of 75% after 3000 cycles of repeated charge–discharge cycling and an extremely high coulombic efficiency of 98%, which was achieved because of a solid-state diffusion controlled Li-ion storage process. After ex situ XRD analysis on the different charge stages, the Li-ion storage in the GaHCCo was attributed to the Co species via the formation of a Li/Co compound. This work will pave the way toward the study of PBAs constructed with trivalent metal ions and provide more insights into the development of high-performance LIBs in the future. The Royal Society of Chemistry 2019-08-27 /pmc/articles/PMC9070449/ /pubmed/35528589 http://dx.doi.org/10.1039/c9ra03746b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zhang, Kaiqiang Lee, Tae Hyung Bubach, Bailey Ostadhassan, Mehdi Jang, Ho Won Choi, Ji-Won Shokouhimehr, Mohammadreza Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title | Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title_full | Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title_fullStr | Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title_full_unstemmed | Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title_short | Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage |
title_sort | coordinating gallium hexacyanocobaltate: prussian blue-based nanomaterial for li-ion storage |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070449/ https://www.ncbi.nlm.nih.gov/pubmed/35528589 http://dx.doi.org/10.1039/c9ra03746b |
work_keys_str_mv | AT zhangkaiqiang coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT leetaehyung coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT bubachbailey coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT ostadhassanmehdi coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT janghowon coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT choijiwon coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage AT shokouhimehrmohammadreza coordinatinggalliumhexacyanocobaltateprussianbluebasednanomaterialforliionstorage |