Cargando…

Dual targeting of RdRps of SARS-CoV-2 and the mucormycosis-causing fungus: an in silico perspective

During the past few months, mucormycosis has been associated with SARS-CoV-2 infections. Molecular docking combined with molecular dynamics simulation is utilized to test nucleotide-based inhibitors against the RdRps of SARS-CoV-2 solved structure and Rhizopus oryzae RdRp model built in silico. The...

Descripción completa

Detalles Bibliográficos
Autor principal: Elfiky, Abdo A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Medicine Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070561/
https://www.ncbi.nlm.nih.gov/pubmed/35510477
http://dx.doi.org/10.2217/fmb-2022-0083
Descripción
Sumario:During the past few months, mucormycosis has been associated with SARS-CoV-2 infections. Molecular docking combined with molecular dynamics simulation is utilized to test nucleotide-based inhibitors against the RdRps of SARS-CoV-2 solved structure and Rhizopus oryzae RdRp model built in silico. The results reveal a comparable binding affinity of sofosbuvir, galidesivir, ribavirin and remdesivir compared with the physiological nucleotide triphosphates against R. oryzae RdRp as well as the SARS-CoV-2 RdRp as reported before. Additionally, other compounds such as setrobuvir, YAK, IDX-184 and modified GTP compounds 2, 3 and 4 show potential calculated average binding affinities against R. oryzae RdRp. The present in silico study suggests the dual inhibition potential of the recommended drugs and compounds against SARS-CoV-2 and R. oryzae RdRps.