Cargando…
Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics
The methylcyclohexane (MCH)–toluene cycle is a promising liquid organic hydride system as a hydrogen carrier. Generally, MCH dehydrogenation has been conducted over Pt-supported catalysts, for which it requires temperatures higher than 623 K because of its endothermic nature. For this study, an elec...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070780/ https://www.ncbi.nlm.nih.gov/pubmed/35530488 http://dx.doi.org/10.1039/c9ra06042a |
_version_ | 1784700710986711040 |
---|---|
author | Takise, Kent Sato, Ayaka Ogo, Shuhei Seo, Jeong Gil Imagawa, Ken-ichi Kado, Shigeru Sekine, Yasushi |
author_facet | Takise, Kent Sato, Ayaka Ogo, Shuhei Seo, Jeong Gil Imagawa, Ken-ichi Kado, Shigeru Sekine, Yasushi |
author_sort | Takise, Kent |
collection | PubMed |
description | The methylcyclohexane (MCH)–toluene cycle is a promising liquid organic hydride system as a hydrogen carrier. Generally, MCH dehydrogenation has been conducted over Pt-supported catalysts, for which it requires temperatures higher than 623 K because of its endothermic nature. For this study, an electric field was applied to Pt/TiO(2) catalyst to promote MCH dehydrogenation at low temperatures. Selective dehydrogenation was achieved with the electric field application exceeding thermodynamic equilibrium, even at 423 K. With the electric field, “inverse” kinetic isotope effect (KIE) was observed by accelerated proton collision with MCH on the Pt/TiO(2) catalyst. Moreover, Pt/TiO(2) catalyst showed no methane by-production and less coke formation during MCH dehydrogenation. DRIFTS and XPS measurements revealed that electron donation from TiO(2) to Pt weakened the interaction between catalyst surface and π-coordination of toluene. Results show that the electric field facilitated MCH dehydrogenation without methane and coke by-production over Pt/TiO(2) catalyst. |
format | Online Article Text |
id | pubmed-9070780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90707802022-05-06 Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics Takise, Kent Sato, Ayaka Ogo, Shuhei Seo, Jeong Gil Imagawa, Ken-ichi Kado, Shigeru Sekine, Yasushi RSC Adv Chemistry The methylcyclohexane (MCH)–toluene cycle is a promising liquid organic hydride system as a hydrogen carrier. Generally, MCH dehydrogenation has been conducted over Pt-supported catalysts, for which it requires temperatures higher than 623 K because of its endothermic nature. For this study, an electric field was applied to Pt/TiO(2) catalyst to promote MCH dehydrogenation at low temperatures. Selective dehydrogenation was achieved with the electric field application exceeding thermodynamic equilibrium, even at 423 K. With the electric field, “inverse” kinetic isotope effect (KIE) was observed by accelerated proton collision with MCH on the Pt/TiO(2) catalyst. Moreover, Pt/TiO(2) catalyst showed no methane by-production and less coke formation during MCH dehydrogenation. DRIFTS and XPS measurements revealed that electron donation from TiO(2) to Pt weakened the interaction between catalyst surface and π-coordination of toluene. Results show that the electric field facilitated MCH dehydrogenation without methane and coke by-production over Pt/TiO(2) catalyst. The Royal Society of Chemistry 2019-09-03 /pmc/articles/PMC9070780/ /pubmed/35530488 http://dx.doi.org/10.1039/c9ra06042a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Takise, Kent Sato, Ayaka Ogo, Shuhei Seo, Jeong Gil Imagawa, Ken-ichi Kado, Shigeru Sekine, Yasushi Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title | Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title_full | Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title_fullStr | Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title_full_unstemmed | Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title_short | Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
title_sort | low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070780/ https://www.ncbi.nlm.nih.gov/pubmed/35530488 http://dx.doi.org/10.1039/c9ra06042a |
work_keys_str_mv | AT takisekent lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT satoayaka lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT ogoshuhei lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT seojeonggil lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT imagawakenichi lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT kadoshigeru lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics AT sekineyasushi lowtemperatureselectivecatalyticdehydrogenationofmethylcyclohexanebysurfaceprotonics |