Cargando…

A novel ratiometric AIEE/ESIPT probe for palladium species detection with ultra-sensitivity

Existing fluorescent probes for palladium (Pd) species detection have revealed their vulnerabilities, such as low sensitivity, poor anti-interference ability and long reaction time. In order to develop a faster and more accurate detection method for palladium species at extremely low concentrations,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zixuan, Zhang, Mingshu, Zhang, Rui, Liu, Shudi, Yang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070796/
https://www.ncbi.nlm.nih.gov/pubmed/35530446
http://dx.doi.org/10.1039/c9ra06046d
Descripción
Sumario:Existing fluorescent probes for palladium (Pd) species detection have revealed their vulnerabilities, such as low sensitivity, poor anti-interference ability and long reaction time. In order to develop a faster and more accurate detection method for palladium species at extremely low concentrations, in this study, we designed a novel ratiometric AIEE/ESIPT probe (HPNI-1) based on the Tsuji–Trost reaction for Pd. According to the data obtained, the probe was able to detect Pd species with an ultra-high anti-interference ability (Pd : other metals = 1 : 1000), rapid detection time (within 2 minute) and ratiometric fluorescent signal changes with a 1.34 nM detection limit. This study not only proves that existing methods can be improved but also provides future prospects for HPNI-1 as one of the greatest probes for Pd species detection.