Cargando…
Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population
OBJECTIVE: In this study, we evaluated a commercially available computer assisted diagnosis system (CAD). The deep learning algorithm of the CAD was trained with a lung cancer screening cohort and developed for detection, classification, quantification, and growth of actionable pulmonary nodules on...
Autores principales: | Murchison, John T., Ritchie, Gillian, Senyszak, David, Nijwening, Jeroen H., van Veenendaal, Gerben, Wakkie, Joris, van Beek, Edwin J. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070877/ https://www.ncbi.nlm.nih.gov/pubmed/35511758 http://dx.doi.org/10.1371/journal.pone.0266799 |
Ejemplares similares
-
Higher agreement between readers with deep learning CAD software for reporting pulmonary nodules on CT
por: Hempel, H.L., et al.
Publicado: (2022) -
Can Dynamic Imaging, Using (18)F-FDG PET/CT and CT Perfusion Differentiate Between Benign and Malignant Pulmonary Nodules?
por: Marin, Aleksander, et al.
Publicado: (2021) -
Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)
por: Topff, Laurens, et al.
Publicado: (2023) -
A classification of pulmonary nodules by CT scan
por: Bellomi, M
Publicado: (2012) -
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume
por: Zhao, Yingru, et al.
Publicado: (2012)