Cargando…
Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation
Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070882/ https://www.ncbi.nlm.nih.gov/pubmed/35511804 http://dx.doi.org/10.1371/journal.pone.0267626 |
_version_ | 1784700727144218624 |
---|---|
author | Motlagh, Shiva Rezaei Khezri, Ramin Harun, Razif Awang Biak, Dayang Radiah Hussain, Siti Aslina Chee, Ching Yern Kheawhom, Soorathep |
author_facet | Motlagh, Shiva Rezaei Khezri, Ramin Harun, Razif Awang Biak, Dayang Radiah Hussain, Siti Aslina Chee, Ching Yern Kheawhom, Soorathep |
author_sort | Motlagh, Shiva Rezaei |
collection | PubMed |
description | Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires a large consumption of expensive ILs. This study innovatively employs tetramethyl ammonium chloride ([TMAm][Cl]) as an additive in water medium to associate with microwave-assisted ionic liquid extraction (MAILE) in extracting lipids from Nannochloropsis oceanica (N. oceanica) microalgae. In extraction, knowledge of reaction kinetics is crucial since it provides the foundation for developing, controlling, and improving the processes of extraction. Herein, using MAILE, lipids are extracted from N. oceanica microalgae and transesterified to eicosapentaenoic acid (EPA). Mass transfer kinetics are, therefore, investigated using the first and second-order rate law and Patricelli’s model. In the development of models, the influence of temperature (60–90°C) and reaction time (1–25 min) on EPA extraction is empirically evaluated. From the thermodynamic study, the positive values of ΔS (+0.10 kJ mol(-1)K(-1)) and ΔH (+32.50 kJ mol(-1)) and the negative value of ΔG (-1.68 to -4.75 kJ mol(-1)) confirm that this process is endothermic in nature, irreversible and spontaneous. MAILE proves to be a promising approach for the extraction of high-quality EPAs. Due to its low cost, rapid operation, and environmental friendliness, it is seen to be suitable for both pharmaceutical and nutraceutical applications. |
format | Online Article Text |
id | pubmed-9070882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90708822022-05-06 Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation Motlagh, Shiva Rezaei Khezri, Ramin Harun, Razif Awang Biak, Dayang Radiah Hussain, Siti Aslina Chee, Ching Yern Kheawhom, Soorathep PLoS One Research Article Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires a large consumption of expensive ILs. This study innovatively employs tetramethyl ammonium chloride ([TMAm][Cl]) as an additive in water medium to associate with microwave-assisted ionic liquid extraction (MAILE) in extracting lipids from Nannochloropsis oceanica (N. oceanica) microalgae. In extraction, knowledge of reaction kinetics is crucial since it provides the foundation for developing, controlling, and improving the processes of extraction. Herein, using MAILE, lipids are extracted from N. oceanica microalgae and transesterified to eicosapentaenoic acid (EPA). Mass transfer kinetics are, therefore, investigated using the first and second-order rate law and Patricelli’s model. In the development of models, the influence of temperature (60–90°C) and reaction time (1–25 min) on EPA extraction is empirically evaluated. From the thermodynamic study, the positive values of ΔS (+0.10 kJ mol(-1)K(-1)) and ΔH (+32.50 kJ mol(-1)) and the negative value of ΔG (-1.68 to -4.75 kJ mol(-1)) confirm that this process is endothermic in nature, irreversible and spontaneous. MAILE proves to be a promising approach for the extraction of high-quality EPAs. Due to its low cost, rapid operation, and environmental friendliness, it is seen to be suitable for both pharmaceutical and nutraceutical applications. Public Library of Science 2022-05-05 /pmc/articles/PMC9070882/ /pubmed/35511804 http://dx.doi.org/10.1371/journal.pone.0267626 Text en © 2022 Motlagh et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Motlagh, Shiva Rezaei Khezri, Ramin Harun, Razif Awang Biak, Dayang Radiah Hussain, Siti Aslina Chee, Ching Yern Kheawhom, Soorathep Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title | Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title_full | Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title_fullStr | Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title_full_unstemmed | Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title_short | Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
title_sort | kinetic and thermodynamic studies of eicosapentaenoic acid extraction from nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070882/ https://www.ncbi.nlm.nih.gov/pubmed/35511804 http://dx.doi.org/10.1371/journal.pone.0267626 |
work_keys_str_mv | AT motlaghshivarezaei kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT khezriramin kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT harunrazif kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT awangbiakdayangradiah kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT hussainsitiaslina kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT cheechingyern kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation AT kheawhomsoorathep kineticandthermodynamicstudiesofeicosapentaenoicacidextractionfromnannochloropsisoceanicausingtetramethylammoniumchlorideandmicrowaveirradiation |