Cargando…
E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database
Improving the Intensive Care Unit (ICU) management network and building cost-effective and well-managed healthcare systems are high priorities for healthcare units. Creating accurate and explainable mortality prediction models helps identify the most critical risk factors in the patients’ survival/d...
Autores principales: | Safaei, Nima, Safaei, Babak, Seyedekrami, Seyedhouman, Talafidaryani, Mojtaba, Masoud, Arezoo, Wang, Shaodong, Li, Qing, Moqri, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070907/ https://www.ncbi.nlm.nih.gov/pubmed/35511882 http://dx.doi.org/10.1371/journal.pone.0262895 |
Ejemplares similares
-
eICU program favorably affects clinical and economic outcomes
por: Leong, Jason R, et al.
Publicado: (2005) -
CatBoost for big data: an interdisciplinary review
por: Hancock, John T., et al.
Publicado: (2020) -
Circadian rhythm in critically ill patients: Insights from the eICU Database
por: Beyer, Sebastian E., et al.
Publicado: (2021) -
Benchmarking machine learning models on multi-centre eICU critical care dataset
por: Sheikhalishahi, Seyedmostafa, et al.
Publicado: (2020) -
An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries
por: Chang, Wenfeng, et al.
Publicado: (2023)