Cargando…
A multimodal transformer to fuse images and metadata for skin disease classification
Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases...
Autores principales: | Cai, Gan, Zhu, Yu, Wu, Yue, Jiang, Xiaoben, Ye, Jiongyao, Yang, Dawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070977/ https://www.ncbi.nlm.nih.gov/pubmed/35540957 http://dx.doi.org/10.1007/s00371-022-02492-4 |
Ejemplares similares
-
A study on skin tumor classification based on dense convolutional networks with fused metadata
por: Yin, Wenjun, et al.
Publicado: (2022) -
A deep learning based multimodal fusion model for skin lesion diagnosis using smartphone collected clinical images and metadata
por: Ou, Chubin, et al.
Publicado: (2022) -
Images denoising for COVID-19 chest X-ray based on multi-resolution parallel residual CNN
por: Jiang, Xiaoben, et al.
Publicado: (2021) -
Ensemble method using real images, metadata and synthetic images for control of class imbalance in classification
por: Aloo, Rogers, et al.
Publicado: (2022) -
Multimodal Plasmonics in Fused Colloidal Networks
por: Teulle, Alexandre, et al.
Publicado: (2014)