Cargando…

Photon-Counting Detector CT-Based Vascular Calcium Removal Algorithm: Assessment Using a Cardiac Motion Phantom

The diagnostic performance of coronary computed tomography angiography is known to be negatively affected by the presence of severely calcified plaques in the coronary arteries. In this article, the performance of a novel image reconstruction algorithm (PureLumen) based on spectral CT data of a firs...

Descripción completa

Detalles Bibliográficos
Autores principales: Allmendinger, Thomas, Nowak, Tristan, Flohr, Thomas, Klotz, Ernst, Hagenauer, Junia, Alkadhi, Hatem, Schmidt, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071027/
https://www.ncbi.nlm.nih.gov/pubmed/35025834
http://dx.doi.org/10.1097/RLI.0000000000000853
Descripción
Sumario:The diagnostic performance of coronary computed tomography angiography is known to be negatively affected by the presence of severely calcified plaques in the coronary arteries. In this article, the performance of a novel image reconstruction algorithm (PureLumen) based on spectral CT data of a first-generation dual-source photon-counting detector computed tomography (PCD-CT) system was assessed in a phantom study. PureLumen tries to remove only the calcified contributions from the image while leaving the rest unmodified. MATERIALS AND METHODS: The study uses 2 iodine contrast filled vessel phantoms (diameter 4 mm) filled with different concentrations of iodine and equipped with calcified stenosis inserts. Each phantom features 2 separate calcified lesions of 25% and 50% percentage diameter stenosis (PDS) size. The vessel phantoms were mounted inside an anthropomorphic thorax phantom attached to an artificial motion device, simulating realistic cardiac motion at heart rates between 50 beats per minute and 100 beats per minute. Acquisitions were performed using a prospectively electrocardiogram triggered dual-source sequence mode on a PCD-CT system (NAEOTOM Alpha, Siemens Healthineers). Images were reconstructed at 80% of the RR interval with virtual monoenergetic images (Mono) and with additional calcium-removal (PureLumen), both at 65 keV. PureLumen is based on a spectral base material decomposition into iodine and calcium, which aims to reconstruct images without calcium contributions, while leaving all other material contribution unchanged. Stenosis grade was assessed individually for each vessel insert in all reconstructed image series by 2 readers. RESULTS: The measured median PDS values for the 50% lesion were 56.0% (52.0%, 57.0%) for the Mono case and 50.0% (48.5%, 51.0%) for PureLumen. The 25% lesion median PDS values were 36.0% (29.5%, 39.5%) for Mono and 31.5% (30.5%, 34.0%) for PureLumen. Both lesion sizes demonstrate a significant difference between Mono and PureLumen in their result (P < 0.05) with PureLumen median values being closer to the actual true stenosis size for the 50% and 25% lesion. A visual assessment of the image quality depending on the heart rate yielded good image quality up to a heart rate of 80 beats per minute in the PureLumen case. CONCLUSIONS: This phantom study shows that a novel calcium-removal image reconstruction algorithm (PureLumen) using a first-generation dual-source PCD-CT effectively decreases blooming artifacts caused by heavily calcified plaques and improves image interpretability. It also shows that PureLumen retains its performance in the presence of motion with simulated heart rates up to 80 beats per minute. Future in vivo clinical studies are needed to confirm the benefits of this type of reconstruction in terms of coronary computed tomography angiography quality and accuracy.