Cargando…
Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots
Based on the density functional theory and many-body ab initio calculations, we investigate the optoelectronic properties of diamond-shaped quantum dots based graphene, silicene and graphene–silicene hybrid. The HOMO–LUMO (H–L) energy gap, the exciton binding energy, the singlet–triplet energy split...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071045/ https://www.ncbi.nlm.nih.gov/pubmed/35529652 http://dx.doi.org/10.1039/c9ra04001c |
_version_ | 1784700764351889408 |
---|---|
author | Ouarrad, H. Ramadan, F.-Z. Drissi, L. B. |
author_facet | Ouarrad, H. Ramadan, F.-Z. Drissi, L. B. |
author_sort | Ouarrad, H. |
collection | PubMed |
description | Based on the density functional theory and many-body ab initio calculations, we investigate the optoelectronic properties of diamond-shaped quantum dots based graphene, silicene and graphene–silicene hybrid. The HOMO–LUMO (H–L) energy gap, the exciton binding energy, the singlet–triplet energy splitting and the electron–hole overlap are all determined and discussed. Smaller nanostructures show high chemical stability and strong quantum confinement resulting in a significant increase in H–L gap and exciton binding energy. On the other hand, the larger configurations are reactive which implies characteristics favorable to possible electronic transport and conductivity. In addition, the typically strong splitting between singlet and triplet excitonic states and the big electron–hole overlap make these QDs emergent systems for nanomedicine applications. |
format | Online Article Text |
id | pubmed-9071045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90710452022-05-06 Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots Ouarrad, H. Ramadan, F.-Z. Drissi, L. B. RSC Adv Chemistry Based on the density functional theory and many-body ab initio calculations, we investigate the optoelectronic properties of diamond-shaped quantum dots based graphene, silicene and graphene–silicene hybrid. The HOMO–LUMO (H–L) energy gap, the exciton binding energy, the singlet–triplet energy splitting and the electron–hole overlap are all determined and discussed. Smaller nanostructures show high chemical stability and strong quantum confinement resulting in a significant increase in H–L gap and exciton binding energy. On the other hand, the larger configurations are reactive which implies characteristics favorable to possible electronic transport and conductivity. In addition, the typically strong splitting between singlet and triplet excitonic states and the big electron–hole overlap make these QDs emergent systems for nanomedicine applications. The Royal Society of Chemistry 2019-09-11 /pmc/articles/PMC9071045/ /pubmed/35529652 http://dx.doi.org/10.1039/c9ra04001c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ouarrad, H. Ramadan, F.-Z. Drissi, L. B. Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title | Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title_full | Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title_fullStr | Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title_full_unstemmed | Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title_short | Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots |
title_sort | size engineering optoelectronic features of c, si and csi hybrid diamond-shaped quantum dots |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071045/ https://www.ncbi.nlm.nih.gov/pubmed/35529652 http://dx.doi.org/10.1039/c9ra04001c |
work_keys_str_mv | AT ouarradh sizeengineeringoptoelectronicfeaturesofcsiandcsihybriddiamondshapedquantumdots AT ramadanfz sizeengineeringoptoelectronicfeaturesofcsiandcsihybriddiamondshapedquantumdots AT drissilb sizeengineeringoptoelectronicfeaturesofcsiandcsihybriddiamondshapedquantumdots |