Cargando…

A silicon-based quantum dot random laser

Herein, a quantum dot random laser was achieved using a silicon nanowire array. The silicon nanowire array was grown by a metal-assisted chemical etching method. A colloidal quantum dot solution was spin-coated on silicon nanowires to form the random laser. The performance of the random laser was co...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhiyang, Zhang, Hao, Chen, Chao, Aziz, Gohar, Zhang, Jie, Zhang, Xiaoxia, Deng, Jinxiang, Zhai, Tianrui, Zhang, Xinping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071192/
https://www.ncbi.nlm.nih.gov/pubmed/35529661
http://dx.doi.org/10.1039/c9ra04650j
Descripción
Sumario:Herein, a quantum dot random laser was achieved using a silicon nanowire array. The silicon nanowire array was grown by a metal-assisted chemical etching method. A colloidal quantum dot solution was spin-coated on silicon nanowires to form the random laser. The performance of the random laser was controlled by the resistivity of silicon wafers and the length of silicon nanowires. A transition from incoherent random lasing to coherent random lasing was obtained by increasing the resistivity of the silicon wafers. The random lasing threshold increased with an increase in the length of the silicon nanowires. These results may be useful to explore high-performance silicon-based random lasers.