Cargando…

A low molecular weight OLED material: 2-(4-((2-hydroxyethyl)(methyl)amino)benzylidene)malononitrile. Synthesis, crystal structure, thin film morphology, spectroscopic characterization and DFT calculations

2-(4-((2-Hydroxyethyl)(methyl)amino)benzylidene)malononitrile (HEMABM) was synthesized from 4-[hydroxymethyl(methyl)amino]benzaldehyde and propanedinitrile to obtain a low molecular weight fluorescent material with an efficient solid-state emission and electroluminescence properties comparable to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Percino, M. Judith, Cerón, Margarita, Venkatesan, Perumal, Pérez-Gutiérrez, Enrique, Santos, Pilar, Ceballos, Paulina, Castillo, Armando E., Gordillo-Guerra, Paola, Anandhan, Karnambaram, Barbosa-García, Oracio, Bernal, Wilson, Thamotharan, Subbiah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071261/
https://www.ncbi.nlm.nih.gov/pubmed/35529660
http://dx.doi.org/10.1039/c9ra05425a
Descripción
Sumario:2-(4-((2-Hydroxyethyl)(methyl)amino)benzylidene)malononitrile (HEMABM) was synthesized from 4-[hydroxymethyl(methyl)amino]benzaldehyde and propanedinitrile to obtain a low molecular weight fluorescent material with an efficient solid-state emission and electroluminescence properties comparable to the well-known poly(2-methoxy-5(2′-ethyl)hexoxyphenylenevinylene) (MEH-PPV). The HEMABM was used to prepare an organic light-emitting diode by a solution process. Despite the title compound being a small molecule, it showed optical properties and notable capacity to form a film with smooth morphology (10.81 nm) closer to that of polymer MEH-PPV (10.63 nm). The preparation of the device was by spin coating, the electrical properties such as threshold voltage were about 1.0 V for both HEMABM and MEH-PPV, and the luminance 1300 cd m(−2) for HEMABM and 2600 cd m(−2) for MEH-PPV. This low molecular weight compound was characterized by SCXRD, IR, NMR, and EI. Besides a quantitative analysis of the intermolecular interactions by PIXEL, density functional theory (DFT) calculations are reported.