Cargando…
Impact of Box-Cox Transformation on Machine-Learning Algorithms
This paper studied the effects of applying the Box-Cox transformation for classification tasks. Different optimization strategies were evaluated, and the results were promising on four synthetic datasets and two real-world datasets. A consistent improvement in accuracy was demonstrated using a grid...
Autores principales: | Blum, Luca, Elgendi, Mohamed, Menon, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071306/ https://www.ncbi.nlm.nih.gov/pubmed/35527793 http://dx.doi.org/10.3389/frai.2022.877569 |
Ejemplares similares
-
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
por: Hernández-Orozco, Santiago, et al.
Publicado: (2021) -
Machine learning algorithms in microbial classification: a comparative analysis
por: Wu, Yuandi, et al.
Publicado: (2023) -
An Attempt to Boost Posterior Population Expansion Using Fast Machine Learning Algorithms
por: Juda, Przemysław, et al.
Publicado: (2021) -
Machine learning algorithms for predicting determinants of COVID-19 mortality in South Africa
por: Chimbunde, Emmanuel, et al.
Publicado: (2023) -
Inside out: transforming images of lab-grown plants for machine learning applications in agriculture
por: Krosney, Alexander E., et al.
Publicado: (2023)