Cargando…

Integrated Analysis Identifies Four Genes as Novel Diagnostic Biomarkers Which Correlate with Immune Infiltration in Preeclampsia

Preeclampsia remains a high cause of incidence and death for mothers and fetuses in developing nations. Preeclampsia has numerous clinical and biochemical markers that have been tested, but they have failed to provide a conclusive diagnosis in the different phases of the disease's progression....

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Mu-yi, Ji, Ming-hui, Shen, Tian, Lei, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071854/
https://www.ncbi.nlm.nih.gov/pubmed/35528613
http://dx.doi.org/10.1155/2022/2373694
Descripción
Sumario:Preeclampsia remains a high cause of incidence and death for mothers and fetuses in developing nations. Preeclampsia has numerous clinical and biochemical markers that have been tested, but they have failed to provide a conclusive diagnosis in the different phases of the disease's progression. Herein, our team intended to determine potential diagnostic biomarkers for preeclampsia and analyzed associations with immune cells. Two microarray data from mankind's preeclampsia and control specimens were acquired from GSE75010 and GSE44711 datasets. Differentially expressed genes (DEGs) were identified between77 normal samples and 80 preeclampsia samples. Candidate biomarkers were discovered using the least absolute shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE) analysis. The expressions and diagnostic values of genes in preeclampsia were further demonstrated in the GSE44711 dataset (8 control samples and 8 preeclampsia samples). The correlation of critical genes with the proportion of immune cells was analyzed. We identified 20 DEGs in preeclampsia. Diseases enriched by DEGs were mainly related to preeclampsia, gestational diabetes, ovarian disease, female reproductive system disease, and endocrine system disease. COL17A1, FLT1, FSTL3, and SERPINA3 were identified as diagnostic genes of preeclampsia and validated in the GSE44711 datasets. Immune cell infiltration assays suggested that COL17A1, FLT1, FSTL3, and SERPINA3 were related to several immune cells. Overall, we identified four critical diagnostic genes in preeclampsia. Furthermore, more well-designed research studies with larger cohorts were warranted to confirm the value of the four genes for the diagnosis and outcome of preeclampsia patients.