Cargando…
On Hamiltonian Decomposition Problem of 3-Arc Graphs
A 4-tuple (y, x, v, w) in a graph is a 3-arc if each of (y, x, v) and (x, v, w) is a path. The 3-arc graph of H is the graph with vertex set all arcs of H and edge set containing all edges joining xy and vw whenever (y, x, v, w) is a 3-arc of H. A Hamilton cycle is a closed path meeting each vertex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071931/ https://www.ncbi.nlm.nih.gov/pubmed/35528366 http://dx.doi.org/10.1155/2022/5837405 |
Sumario: | A 4-tuple (y, x, v, w) in a graph is a 3-arc if each of (y, x, v) and (x, v, w) is a path. The 3-arc graph of H is the graph with vertex set all arcs of H and edge set containing all edges joining xy and vw whenever (y, x, v, w) is a 3-arc of H. A Hamilton cycle is a closed path meeting each vertex of a graph. A graph H including a Hamilton cycle is called Hamiltonian and H has a Hamiltonian decomposition provided its edge set admits a partition into disjoint Hamilton cycles (possibly with a single perfect matching). The current paper proves that every connected 3-arc graph consists of more than one Hamilton cycle. Since the 3-arc graph of a cubic graph is 4-regular, it further proves that each 3-arc graph of a cubic graph in a certain family has a Hamiltonian decomposition. |
---|