Cargando…
Stress Classification Using Brain Signals Based on LSTM Network
The early diagnosis of stress symptoms is essential for preventing various mental disorder such as depression. Electroencephalography (EEG) signals are frequently employed in stress detection research and are both inexpensive and noninvasive modality. This paper proposes a stress classification syst...
Autores principales: | Phutela, Nishtha, Relan, Devanjali, Gabrani, Goldie, Kumaraguru, Ponnurangam, Samuel, Mesay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071939/ https://www.ncbi.nlm.nih.gov/pubmed/35528348 http://dx.doi.org/10.1155/2022/7607592 |
Ejemplares similares
-
Unlock Me: A Real-World Driven Smartphone Game to Stimulate COVID-19 Awareness
por: Phutela, Nishtha, et al.
Publicado: (2022) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals
por: Kang, Mingu, et al.
Publicado: (2021) -
Packets-to-Prediction: An Unobtrusive Mechanism for Identifying Coarse-Grained Sleep Patterns with WiFi MAC Layer Traffic
por: Jaisinghani, Dheryta, et al.
Publicado: (2023) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021)