Cargando…

Visualization and Analysis Model of Industrial Economy Status and Development Based on Knowledge Graph and Deep Neural Network

This paper adopts knowledge mapping combined with a deep neural network algorithm to conduct in-depth research and analysis on the current situation and development of the industrial economy and designs a visual analysis model of economic development based on knowledge mapping combined with a deep n...

Descripción completa

Detalles Bibliográficos
Autor principal: Quan, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071965/
https://www.ncbi.nlm.nih.gov/pubmed/35528336
http://dx.doi.org/10.1155/2022/7008093
Descripción
Sumario:This paper adopts knowledge mapping combined with a deep neural network algorithm to conduct in-depth research and analysis on the current situation and development of the industrial economy and designs a visual analysis model of economic development based on knowledge mapping combined with a deep neural network algorithm. Cultivate the concept of coordinated development and legal system of the subject, improve the awareness of network security and integrity self-discipline of the subject, improve the level of network hardware equipment manufacturing, improve the level of network platform construction, build a network security technology prevention system, improve the repair system of network information alienation, set up a specialized agency setting for the coordinated development of network ecology and industrial economy, and increase the capital investment in network infrastructure and network information technology research and development. A framework of breadth and depth recommendation ranking based on a knowledge graph is proposed and implemented. This paper provides a visual analysis method to sort and classify multivariate data. The method first determines users' preferences through their interactive operations, calculates the weights of each attribute according to the users' preference model, then uses the obtained attribute weight sets to sort the whole data set, and finally completes the category classification according to the sorting results and the users' markings on some data. The visual display allows users to intuitively perform data sorting and classification operations and quickly understand the characteristics and category features of the data. The framework achieves modeling and integration of knowledge graph neighborhood information from breadth dimension and depth dimension to realize personalized recommendation sorting and improves the F1 metrics by 8.59%, 14.36%, and 15.22% on the public datasets Amazon-book, Yelp2018, and ILast-FM compared with the previous optimal model.