Cargando…
EEG Signal Classification Using Manifold Learning and Matrix-Variate Gaussian Model
In brain-computer interface (BCI), feature extraction is the key to the accuracy of recognition. There is important local structural information in the EEG signals, which is effective for classification; and this locality of EEG features not only exists in the spatial channel position but also exist...
Autores principales: | Zhu, Lei, Hu, Qifeng, Yang, Junting, Zhang, Jianhai, Xu, Ping, Ying, Nanjiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071993/ https://www.ncbi.nlm.nih.gov/pubmed/35530739 http://dx.doi.org/10.1155/2021/6668859 |
Ejemplares similares
-
Gaussian bandwidth selection for manifold learning and classification
por: Lindenbaum, Ofir, et al.
Publicado: (2020) -
Transversality Conditions for Geodesics on the Statistical Manifold of Multivariate Gaussian Distributions
por: Herntier, Trevor, et al.
Publicado: (2022) -
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
por: Li, Didong, et al.
Publicado: (2023) -
Transferred Subspace Learning Based on Non-negative Matrix Factorization for EEG Signal Classification
por: Dong, Aimei, et al.
Publicado: (2021) -
A Nonparametric Model for Multi-Manifold Clustering with Mixture of Gaussians and Graph Consistency
por: Ye, Xulun, et al.
Publicado: (2018)