Cargando…
Design and Implementation of Obstetric Central Monitoring System Based on Medical Image Segmentation Algorithm
At present, the incidence of emergencies in obstetric care environment is gradually increasing, and different obstetric wards often have a variety of situations. Therefore, it can provide great help in clinical medicine to give early warning and plan coping plans according to different situations. T...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072048/ https://www.ncbi.nlm.nih.gov/pubmed/35529540 http://dx.doi.org/10.1155/2022/3545831 |
Sumario: | At present, the incidence of emergencies in obstetric care environment is gradually increasing, and different obstetric wards often have a variety of situations. Therefore, it can provide great help in clinical medicine to give early warning and plan coping plans according to different situations. This paper studied an obstetrics central surveillance system based on a medical image segmentation algorithm. Images obtained by central obstetrics monitoring are segmented, magnified in detail, and image features are extracted, collated, and trained. The normal distribution rule is used to classify the features, which are included in the feature library of the obstetric central monitoring system. In the gray space of the medical image, the statistical distribution of gray features of the medical image is described by the mixture model of Rayleigh distribution and Gaussian distribution. In the gray space of the medical image, Taylor series expansion is used to describe the linear geometric structure of medicine. The eigenvalues of Hessian matrix are introduced to obtain high-order multiscale features of medicine. The multiscale feature energy function is introduced into Markov random energy objective function to realize medical image segmentation. Compared with other segmentation algorithms, the accuracy and sensitivity of the proposed algorithm are 87.98% and 86.58%, respectively, which can clearly segment small medical features. |
---|