Cargando…
Dynamic graph convolutional network for assembly behavior recognition based on attention mechanism and multi-scale feature fusion
Intelligent recognition of assembly behaviors of workshop production personnel is crucial to improve production assembly efficiency and ensure production safety. This paper proposes a graph convolutional network model for assembly behavior recognition based on attention mechanism and multi-scale fea...
Autores principales: | Chen, Chengjun, Zhao, Xicong, Wang, Jinlei, Li, Dongnian, Guan, Yuanlin, Hong, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072355/ https://www.ncbi.nlm.nih.gov/pubmed/35513554 http://dx.doi.org/10.1038/s41598-022-11206-8 |
Ejemplares similares
-
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
por: Zhang, Haiping, et al.
Publicado: (2023) -
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022) -
An Attention-Enhanced Multi-Scale and Dual Sign Language Recognition Network Based on a Graph Convolution Network
por: Meng, Lu, et al.
Publicado: (2021) -
RNN-combined graph convolutional network with multi-feature fusion for tuberculosis cavity segmentation
por: Xiao, Zhitao, et al.
Publicado: (2023) -
Convolutional Models with Multi-Feature Fusion for Effective Link Prediction in Knowledge Graph Embedding
por: Guo, Qinglang, et al.
Publicado: (2023)