Cargando…
Assessment of age, gender, and anxiety on ECG waveform morphology in a large population of domestic dogs
Cardiovascular diseases are major causes of death in the western world and this incidence increases in the elderly population. With aging, there are physiologic changes to the cardiac structure secondary to adipose tissue deposition, calcification of valve leaflets and changes in the structure of th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072377/ https://www.ncbi.nlm.nih.gov/pubmed/35513697 http://dx.doi.org/10.1038/s41598-022-11378-3 |
Sumario: | Cardiovascular diseases are major causes of death in the western world and this incidence increases in the elderly population. With aging, there are physiologic changes to the cardiac structure secondary to adipose tissue deposition, calcification of valve leaflets and changes in the structure of the heart including atrial remodeling. Such changes can make the myocardium more susceptible to stress leading to a higher prevalence of cardiovascular diseases in the aging population. Studies in healthy humans have shown that these structural and molecular changes in the heart are manifested as changes on an electrocardiogram (ECG). Using animal models, similar ECG changes have been found in guinea pigs, rabbits, and mice. No veterinary study has specifically evaluated if comparable aging changes occur in canine species. In this cross-sectional retrospective study, 12,026 ECGs from apparently healthy dogs were obtained and evaluated. Age was observed to have both linear and non-linear associations with multiple ECG variables, including P wave amplitude and duration, R amplitude and QRS duration. This study confirmed that, like humans, there may be ECG changes secondary to normal physiological cardiac aging. Further studies are warranted to confirm and elaborate on these findings as canines may be a useful model for cardiac aging in humans. |
---|